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INTRODUCTION

SUMMARY

Hereditary breast, ovarian, pancreas and prostate cancer (HBOC/HBOPC) syndromes remain a major
global health concern, with BRCAI, BRCA2 and other high- or moderate-risk homologous recombi-
nation repair (HRR) gene variants driving a significant share of familial cancer risk. Beyond breast and
ovarian sites, these mutations increase susceptibility to prostate, pancreatic, and other solid tumors, high-
lighting the syndromic nature of HBOPC. Advances in multigene panel testing (MPT), Al-supported
variant classification, and polygenic risk scores (PRS) now enable more precise risk estimation, while
functional reclassification and population-specific founder mutation mapping reduce uncertainty in un-
derrepresented groups. Emerging epigenetic and non-coding RNA biomarkers further strengthen early
detection and treatment stratification. However, large-scale validation is still needed to translate these
tools into equitable care. Risk-reducing surgeries, tailored surveillance, and targeted therapies—includ-
ing PARP inhibitors, immunotherapy, and homologous recombination deficiency (HRD)-based regi-
mens—have transformed management but require equitable access and culturally sensitive counseling to
address psychosocial barriers and family communication challenges. Real-world data (RWD) and cross-
border variant databases are essential to bridge gaps between guidelines and practice, especially where
founder effects and mosaicism complicate standard criteria. This review integrates current evidence on
the genetic and molecular foundations, organ-specific management, evolving therapies, and ethical di-
mensions of HBOPC care. By combining multidisciplinary insights with AI, functional analyses, and
real-world implementation strategies, this review highlights how next-generation precision oncology can
deliver equitable, high-quality, and locally adapted prevention and treatment for families worldwide.
Keywords: BRCA1 ¢ BRCA2; founder mutations; hereditary breast ovarian pancreatic prostate cancer syndrome;
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and mortality rates worldwide. According to GLOBO-
CAN 2022 estimates, approximately 20 million new

Cancer remains one of the most critical public health
burdens of the 21* century, driven by rising incidence

cases are diagnosed globally each year, resulting in
nearly 9.7 million cancer-related deaths. Consequently,
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one in five individuals is expected to develop malig-
nancy during their lifetime.[1] Among all neoplasms,
breast cancer (BC) is the most prevalent malignancy in
women, with 2.3 million new cases annually, represent-
ing nearly a quarter of all female cancer diagnoses. In
comparison, ovarian cancer (OC) accounts for around
324,000 new cases and 207,000 deaths per year, rank-
ing it among the leading gynecological cancers.[1]

It is generally estimated that 5-10% of all cancers
have a hereditary basis.[2,3] Nonetheless, considering
the two-hit hypothesis along with additional genetic,
epigenetic, and environmental factors, the true contri-
bution of hereditary risk likely to exceed this estimate.
[4-7] Among hereditary cancers, HBOPC and Lynch
syndrome (LS) are the most extensively character-
ized and together account for a substantial fraction
of inherited malignancies.[3,8] Pathogenic variants in
BRCA1I and BRCA2, which play a pivotal role in HRR
pathways, underlie the genetic basis of HBOPC and
confer significantly increased risks of breast, ovarian,
prostate, and pancreatic cancers.[9-13] While BRCA1/
BRCA2 genes remain central, non-BRCA genes such
as PALB2, ATM, CHEK2, TP53, and mismatch re-
pair (MMR) genes associated with LS (MLHI, MSH2,
MSH6, PMS2) further broaden the spectrum of heredi-
tary cancer risk. Notably, the introduction of MPT has
greatly improved diagnostic yield by covering this ex-
panded genetic landscape.[14-17]

Recent advancements in multigene panels, Al-
assisted variant classification, and PRS have mark-
edly refined individualized risk prediction and early
detection.[2,14,18-20] Simultaneously, advances in
functional assays, founder mutation analyses, and
emerging epigenetic and non-coding RNA biomark-
ers have expanded our understanding of popula-
tion-specific variant spectra and therapeutic targets.
[6,7,21-25] Nevertheless, real-world evidence consis-
tently reveals that psychosocial barriers, family com-
munication gaps, and unequal access to counseling
and testing continue to limit the full potential of these
advances—particularly for low-resource and under-
represented groups.[11,26-29]

This review synthesizes current evidence on
HBOPC and related hereditary syndromes by exam-
ining their genetic and epigenetic underpinnings,
real-world founder mutation patterns, organ-specif-
ic risks, risk-reducing interventions, and emerging
therapeutic avenues such as PARP inhibitors (PARPi)
and immunotherapy. Additionally, it highlights the
ethical and psychosocial dimensions that shape up-
take of testing and cascade screening. By integrating
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Al-enabled tools, real-world datasets, and regionally
tailored approaches, this work aims to equip multi-
disciplinary teams to translate precision oncology ad-
vances into practical, equitable, and culturally respon-
sive care for diverse populations (Fig. 1). In line with
the most recent NCCN guidelines, which expanded
the Genetic/Familial High-Risk Assessment beyond
breast and ovarian to also include pancreatic and
prostate cancers,[30] we consistently use the broader
term HBOPC (Hereditary Breast, Ovarian, Pancreat-
ic and Prostate Cancer) throughout this review. This
choice is further supported by recent literature that
has adopted the same terminology in clinical and re-
search contexts.[31-33] Where the older term HBOC
is found, it reflects historical usage in cited references
rather than our framework.

GENETICS AND MOLECULAR BASIS

BRCA1/BRCA2 Mutations: Spectrum, Pene-
trance, and Therapeutic Response

BRCA1I and BRCA2 are key tumor suppressor genes
that play a pivotal role in homologous recombina-
tion (HR)-mediated DNA repair. Loss of function—
whether through pathogenic variants or epigenetic
silencing—induces HRD, which leads to genomic in-
stability and increased susceptibility to multiple can-
cer types.[16,17,34,35] Estimated lifetime risks for
BC in BRCAI carriers range from 60% to 72% (HR,
95% CI 58-74) and from 55% to 69% for BRCA2 (HR,
95% CI 52-71), while OC risks range from 39% to
58% for BRCA1 (HR, 95% CI 36-60) and 11% to 25%
for BRCA2 (HR, 95% CI 9-27). Importantly, BRCA1/
BRCA?2 mutations are also associated with elevated
risks for prostate (RR ~3.5, 95% CI 2.8-4.4), pancre-
atic, (RR ~6.0, 95% CI 4.0-8.5), melanoma (OR ~2.6,
95% CI 1.8-3.7), and male breast cancers (RR ~15,
95% CI 10-22), with these risks comprehensively
outlined in Table 1.[17,36] Consequently, BRCA1/
BRCA?2 mutations remain the best-characterized ge-
netic basis of HBOPC.

Population-based analyses highlight substantial
variability in BRCAI/BRCA2 mutation frequencies
and associated cancer risks across different ethnici-
ties and regions. A notable example is the UK Bio-
bank, which shows that BRCA2 mutations increase
risk not only for breast and ovarian cancers but also
for prostate, pancreatic, melanoma and other solid tu-
mors, with female BC risk reaching 29.2% (HR 4.89,
95% CI 4.32-5.54) and a 15-fold increase for male BC
(HR 15.42, 95% CI 7.20-33.01).[37] Prostate cancer
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Fig. 1.

roadmap of future pathways.

Schematic overview of the hereditary breast, ovarian, pancreas and prostate cancer (HBOPC) spectrum, associ-
ated organ-specific risks, and the integrated multidimensional management approach, illustrated as a simplified

NGS: Next-Generation Sequencing; VUS: Variants of Uncertain Significance; HRR: Homologous Recombination Repair; PRS: Poly-
genic Risk Score; Al Artificial Intelligence; ACMG: American College of Medical Genetics; in-silico, Computational Prediction;
RRM: Risk-Reducing Mastectomy; RRSO: Risk-Reducing Salpingo-Oophorectomy; CP: Chemoprevention; Cascade, Cascade Test-
ing; RWD: Real-World Data; Registry, Patient Registries; Population DB: Population-Based Variant Databases.

risk in male BRCA2 carriers may reach as high as 60%
(lifetime risk 60%, 95% CI 43-78%),[38] further un-
derscoring the importance of comprehensive genetic
counseling and cascade testing to optimize early de-
tection and prevention.[27]

There is strong evidence that BRCA1/BRCA2
pathogenic variants are associated with distinct tumor
subtypes. BRCA1 mutations are detected in over 50%
of triple-negative breast cancer (TNBC) cases, whereas
BRCA2 mutations are more frequently linked to estro-
gen receptor—positive (ER+) phenotypes.[7,22,39,40]

Recent genetic studies show that PRS can signifi-
cantly modify the penetrance of monogenic variants.
For example, high-PRS BRCA1/BRCA2 carriers may
have BC risks approaching 76% (95% CI 72-80) by
age 75, highlighting the benefit of integrating PRS
into personalized risk estimation and screening
strategies.[20,23]

Emerging data suggest that BRCAI/BRCA2 vari-
ants may shape treatment response through molecular

features such as HRD status and tumor immune mi-
croenvironment changes. These molecular profiles may
modulate PD-L1 expression and support the rationale
for combining PARPi with immunotherapy.[41]

Emerging findings indicate that psychosocial bar-
riers can significantly influence the uptake of genetic
testing and cascade screening. Fear of genetic discrimi-
nation contributes to suboptimal completion rates,
while genetic labeling anxiety may impose a psychoso-
cial burden regardless of objective penetrance.[27,28]

Taken together, these data on the mutation spec-
trum, penetrance, and molecular phenotypes of
BRCA1/BRCA2 variants form the cornerstone for ad-
vancing individualized risk assessment and tailored
management in HBOPC.

Non-BRCA1/BRCA2 High- and Moderate-Risk
Genes and Candidate Genes

Beyond BRCAI and BRCA2, several other high- and
moderate-penetrance genes significantly contribute
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to the genetic basis of HBOPC syndromes. Estimated
lifetime risks, syndromic associations, founder muta-
tions, and management highlights for these genes are
detailed in Table 1.[17] Pathogenic variants (PVs) in
high-penetrance genes such as TP53, PALB2, STK11,
PTEN, and CDH] are linked to distinct hereditary can-
cer syndromes—including Li-Fraumeni, Peutz-Jeghe-
rs, and hereditary diffuse gastric cancer (HDGC)—and
often confer increased risks of aggressive tumor phe-
notypes and multi-organ involvement at an early age,
with lifetime BC risks ranging from ~40% to 80% (e.g.,
TP53 ~80%, 95% CI 70-90; PALB2 44-60%, HR 4.5,
95% CI 3.5-5.6; CDH1 40-50%).[17,42,43]

Population-based studies indicate that among
moderate-risk genes, CHEK2, ATM, BARDI, RAD51C,
RADS5ID, and NBN are particularly noteworthy. Al-
though variants in these genes do not always strongly
correlate with BRCA-like phenotypes, their clinical rel-
evance increases when combined with family history,
age, tumor subtype, or PRS.[22,39] Reported mutation
rates for CHEK?2 reach up to 12.2% (OR ~2.3; 95% CI
1.8-2.9) and for ATM up to 5.6% (HR ~2.0; 95% CI 1.4-
2.7) in certain cohorts. Variants in BARDI1, RAD51C,
RAD51D, and NBN are less frequent (typically 1-2%),
but their contribution is clinically meaningful in the
presence of family history or TNBC predisposition. It is
also emphasized that there is no established direct as-
sociation between PALB2 and the prevalence of TNBC
within certain cohorts.[22]

There is growing evidence that the MMR genes—
MLHI, MSH2, MSH6, and PMS2—linked to LS re-
main diagnostically relevant for endometrial and ovar-
ian cancers.[44-46] Founder mutations in MSH6 have
been identified among Ashkenazi Jewish (AJ) individ-
uals, highlighting how population-specific variants can
guide targeted screening strategies.[47]

MPT has expanded the detection of ATM, CHEK?2,
PALB2, RAD51C/D, and BARDI variants among BR-
CA-negative cases.[14,15] Recent analyses have also
identified PVs in candidate genes such as DROSHA,
SLC34A2, and FAN1, which are involved in DNA re-
pair pathways.[15] However, the clinical significance of
certain candidate genes, including MREIIA, remains
unconfirmed in systematic studies.[48] Family-based
reports continue to highlight novel variants of un-
certain significance (VUS). Such as, Biswas et al.[49]
described a BRCA-negative Indian family in which a
germline RAD51ID variant co-segregated with four
other incidental variants (ADAMTS13, SYCEI, LIAS,
PDHA]I), underscoring the complexity of moderate-
risk gene interactions and the importance of cautious
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interpretation when assessing familial cancer predis-
position and potential candidate risk modifiers.[49]

Emerging insights indicate that non-BRCAI/
BRCA2 genes are closely tied to HRR pathways, con-
tributing to the BRCAness phenotype and informing
molecularly targeted treatment approaches. For exam-
ple, ATM mutations may create synthetic lethality op-
portunities when co-targeted with ATR or DNA-PKcs
inhibitors.[50]

At the epigenetic level, recent evidence also shows
that these genes can be regulated by miRNA path-
ways. For instance, Tuncer et al.[51] described the
involvement of TP53 and CHEK?2 in cell cycle control
through the MDM2-CHEK]1 axis, while Ghafour et
al.,[52] Saral et al.[53] and Delek et al.[54] highlight-
ed these specific miRNAs may modulate OC progres-
sion.[51-54]

Recognizing these non-BRCA1/BRCA?2 risk genes
provides a critical framework for precision screening
and tailored genetic counseling in diverse populations.

Founder Mutations, Variants of Uncertain Signifi-
cance (VUS), and Epigenetic Modifiers

Variants of Uncertain Significance (VUS):
VUS remain a major source of clinical ambiguity in
HBOPC syndromes. By definition, these are genetic
variants with unresolved pathogenicity. Carrier rates
vary substantially depending on population diver-
sity, panel scope, and classification algorithms, with
estimates reaching up to 30% for BRCA1/BRCA2 in
large cohorts.[23] Elevated VUS rates have also been
reported for moderate-risk genes such as ATM and
CHEK2.[22] Notably, underrepresented populations
often show disproportionately higher VUS rates due
to limited reference data, as clearly demonstrated
in the Caribbean cohort, where the VUS prevalence
reached 33%.[39] In contrast, a Tanzanian cohort
showed a remarkably low VUS rate of just 1%, high-
lighting regional variability.[55]

Emerging evidence shows that advances in func-
tional reclassification are improving VUS interpretabil-
ity. Tools such as RNA-splice assays, loss of heterozy-
gosity (LOH) analyses, and Al-supported scoring (e.g.,
MAE CADD, Eigen) now enable detection of splicing
anomalies and structural variants affecting gene func-
tion.[10,50] For instance, the BRCAI c.5407-25T>A
variant displays a “leaky splice” profile producing par-
tially functional transcripts, while BRIP1 ¢.1140+1G>C
demonstrates clear loss of function through exon skip-
ping.[56] Integrating BRCAness features and LOH sig-
natures into analysis pipelines may resolve a substan-
tial portion of ambiguous findings.[10]
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Population-Specific Founder Mutations: Un-
derstanding population-specific founder mutations is
crucial for refining testing strategies and contextualiz-
ing VUS findings. Estimated frequencies and founder
variants are presented in Table 1.[17] Founder muta-
tions, which arise from common ancestors and persist
at high frequencies in genetically isolated groups, can
significantly improve the cost-effectiveness and yield
of MPT. The Ashkenazi Jewish community remains the
best-known example, with carrier rates over threefold
higher for BRCA2 compared to the general population.
[37] Similar effects have been observed in the Caribbe-
an, where the prevalence of BRCA1/2 pathogenic vari-
ants reached 23% in the Bahamas, reflecting a strong
founder effect.[39] Additional regional clusters, such as
BRCA?2 Tokushima-specific variants in Japan and the
BRCA1 ¢.3607C>T variant in Romania, emphasize the
value of customized panels.[7,21,57]

At a more granular level, founder mutations can
cluster within families or tribal groups. For example,
a RAD51D variant has been documented segregating
within an Indian family,[49] while a PMS2 exon 6-11
deletion has been identified in a tribal group in Qatar.
[58] Regional differences have also been noted within
Tiirkiye: BRCAI/BRCA2 rearrangement frequencies
unique to the Black Sea and Marmara regions highlight
possible local founder effects and an increased preva-
lence of male BC.[59,60] However, translating these in-
sights into equitable clinical practice remains challeng-
ing. Underrepresented or disadvantaged communities
often face barriers in accessing genetic services; for
example, chatbot-based engagement tools have shown
significantly lower uptake among Hispanic individuals,
underscoring the need for equitable outreach and cul-
turally tailored genetic counseling.[11,61]

Epigenetic Modifiers and Non-Coding RNAs:
Epigenetic modifiers add an intersecting layer by
modulating the functional expression of both common
and founder variants and clarifying ambiguous VUS
results. DNA methylation patterns, such as RASSF1A
or CYB5R4 hypermethylation, have been linked to in-
creased HBOPC risk and early diagnostic potential.
[24,62,63] A case in point is promoter methylation of
RASSFIA, which may be detectable in plasma DNA
prior to diagnosis, supporting its potential as a non-
invasive biomarker.[62]

Histone modifications are also influential. Loss of
BRCAI can activate LSD-1-mediated H3K4mel/2 de-
methylation, HDAC1/2 activity, and proto-oncogene
upregulation, reshaping the tumor microenvironment
and promoting resistance mechanisms.[6,17]
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Non-coding RNAs (ncRNAs) further refine this
axis. Upregulated miRNAs such as miR-3135b, miR-
1273g-3p, miR-3653-3p, and the miR-1260 fam-
ily modulate DNA repair and cell cycle pathways.
[51,52,54] Additionally, IncRNAs like HOTAIR and
PANDAR interact with histone-modifying complexes
to silence tumor suppressor genes, supporting multi-
omic profiling as a promising tool for VUS reclassifica-
tion and more accurate risk estimates.[6]

Taken together, these findings demonstrate that the
integration of founder mutation mapping, advanced
VUS reclassification, and multi-layered epigenetic pro-
filing provides a clear framework to enhance HBOPC
diagnostic precision and personalized risk prediction.
Expanding population-specific variant databases, har-
monizing data sharing, and validating new biomark-
ers will be key to realizing the full clinical potential of
these mechanisms.

CLINICAL SYNDROMES AND ORGAN-SPECIFIC
MANAGEMENT

Comprehensive Management of Hereditary
Breast Cancer
Genetic and Phenotypic Risk Profile: Hereditary
breast cancer (HBC) represents a unique clinical enti-
ty primarily driven by high- and moderate-risk genes
such as BRCA1, BRCA2, PALB2, TP53, and CHEK?2,
which distinguish it from sporadic cases by features
including earlier age of onset, bilateral disease risk,
distinctive tumor subtype distribution, and increased
male BC incidence.[22,43] Risk estimates, syndromic
associations, founder variants, and key management
highlights for these genes are compiled in Table 1
(95% CI, HR/OR as appropriate; EMQN, ASCO,
ESMO);[16,17,34] Classic indicators include early-
onset, bilateral tumors, or male BC, but large-scale
analyses such as the 100,000 Genomes Project show
that relying solely on phenotypic triggers may miss
up to 20-30% of carriers.[23] Founder mutations and
population-specific variants remain practical consid-
erations; for example, in Bahamian populations, the
prevalence of BRCA1/2 pathogenic variants has been
reported as high as 23%, underlining the value of
founder-specific panels.[39] Mosaicism, low variant
allele frequency (VAF) variants, and epigenetic mark-
ers such as RASSFIA or CYB5R4 hypermethylation
can further refine risk estimates.[24,62,63]

Screening and Surveillance Protocols: Genetic
counseling forms the cornerstone of risk assessment
and surveillance planning. International guidelines
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EMQN;[17], ESMO;[16], ASCO;[34] emphasize com-
prehensive pre- and post-test counseling that includes
variant interpretation, psychosocial impact, and cas-
cade testing pathways to reach at-risk relatives, while
addressing persistent barriers such as cost concerns,
fear of positive results, and genetic discrimination.
[27,29] Screening recommendations must align
with gene-specific risk levels and tumor biology. For
BRCA1/BRCA2 carriers, annual breast MRI is recom-
mended starting at ages 25-30, with mammography
added after 30 while minimizing radiation exposure
in young women due to theoretical radiosensitivity.
[17,64] In Li-Fraumeni syndrome (LFS; TP53), thera-
peutic or diagnostic radiation warrants special cau-
tion as it can elevate sarcoma risk.[42] The strong
association of TNBC with BRCAI—with prevalence
reaching 53-57% in carriers under age 40 [22]—sup-
ports early and intensive MRI surveillance. Addition-
ally, PRS can help tailor surveillance intervals by re-
fining lifetime risk estimates.[20]

Risk-Reducing Surgery and Chemoprevention:
Risk-reducing surgery, including prophylactic bilat-
eral mastectomy (PBM) and contralateral prophy-
lactic mastectomy (CPM), remains one of the most
effective interventions for mutation carriers. For ex-
ample, Guzauskas et al.[65] estimated PBM uptake
rates to range between 15-36% in real-world settings,
highlighting the influence of personal risk perception
and clinical guidance on these decisions.[65] Among
BRCA1/BRCA2 carriers with wunilateral disease,
Makhnoon et al.[66] reported that 56% choose CPM,
with post-CPM survival differences observed by race
and ethnicity.[66] Real-world adoption is strongly in-
fluenced by psychosocial, cultural, and access-related
factors.[61] Shared decision-making models, includ-
ing tools like RealRisks and chatbot-based support,
have shown promise in improving patient under-
standing and alignment with their values.[67] When
surgery is deferred or declined, chemoprevention
with selective estrogen receptor modulators (SERMs)
such as tamoxifen or raloxifene remains an option to
reduce incidence, although Trivedi et al.[68] empha-
size that side effects and persistent hesitancy contin-
ue to limit broader uptake.[68]

Epigenetic and Molecular Modifiers: Emerging
evidence highlights that HRD and structural variant
burden (SVhigh) are critical factors in selecting can-
didates for PARPi therapy. Trials such as OlympiA and
VELIA demonstrate that maintenance olaparib signifi-
cantly improves progression-free survival in high-risk
groups.[22] Optical genome mapping studies confirm
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that BRCA 1/BRCA2-associated tumors with high HRD
scores and SVhigh profiles may benefit from PARPi-
immunotherapy combinations, leveraging pathways
such as STING activation and PD-L1 upregulation.
[9] Nonetheless, resistance mechanisms—including
PRIMPOL-mediated replication fork stabilization and
MYC/E2F1 amplification—emphasize the need for
continuous tumor profiling, LOH analysis, and dy-
namic reclassification of VUS.[69]

Multidisciplinary Coordination and Best Prac-
tice Alignment: Guideline convergence from EMQN,
ESMO, and ASCO underscores the importance of in-
tegrating MPT, founder variant mapping, PRS calcula-
tion, epigenetic profiling, and HRD/SVhigh data into
patient-centered genetic counseling. Ensuring equita-
ble access, adequately trained genetic counselors, and
culturally sensitive communication remains essential
to maximize uptake and align decisions with patient
preferences.[16,17,34]

Managing HBC calls for a truly integrated approach
that brings together gene-specific risk assessment, de-
tailed molecular profiling, tailored risk-reducing strat-
egies, and vigilant surveillance. As evidence on PARP
inhibitor combinations, immunotherapy, and dynamic
variant reclassification continues to expand, multidis-
ciplinary teams must remain responsive and proac-
tive—ensuring that the promise of precision medicine
is realized as meaningful survival gains for patients
across diverse populations.

Comprehensive Management of Hereditary
Ovarian Cancer

Genetic Landscape and Counseling: Hereditary ovar-
ian cancer is predominantly driven by BRCA1/BRCA2
mutations, alongside contributions from HRR genes
such as RAD51C, RAD51D, and BRIPI1.[12,22,49,70]
Risk estimates, syndromic associations, founder vari-
ants, and age-specific recommendations for these genes
are outlined in Table 1 (95% CI, HR/OR as appropri-
ate).[16,17,34] BRCAI carriers face an elevated risk
for high-grade serous carcinoma (HGSC) after age 40,
while BRCA2 carriers tend to develop later-onset dis-
ease with lower penetrance.[37] Comprehensive genet-
ic counseling forms the cornerstone of risk assessment
and shared decision-making. Major guidelines (ESMO,
EMQN, ASCO) recommend that counseling sessions
address fertility preservation, hormone replacement
therapy (HRT), and cascade testing for family mem-
bers.[27,29] The wider use of multigene panels contin-
ues to uncover moderate-risk genes whose penetrance
and clinical relevance require further validation.[49]
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Surgical Risk Reduction and Surveillance: In
the absence of reliable early detection tools, risk-re-
ducing salpingo-oophorectomy (RRSO) remains the
most effective preventive strategy for high-risk carri-
ers. EMQN and ESMO guidelines recommend RRSO
between ages 35-40 for BRCA 1 and 40-45 for BRCA2
carriers, aligned with age-specific HGSC risk.[16,17]
Real-world uptake is variable: Guzauskas et al.[65]
estimate that RRSO could prevent up to 8 cases per
100,000, yet Nazareth et al.[61] report that only
17% of eligible carriers undergo surgery, reflecting
psychosocial and fertility-related concerns.[61,65]
Surveillance options remain limited, as transvaginal
ultrasound (TVUS) and CA-125 have not demon-
strated a mortality benefit, reinforcing the impor-
tance of informed decision-making and consistent
follow-up.[16] Notably, emerging biomarkers—such
as CYB5R4 hypermethylation and circulating miR-
NAs including miR-3135b, miR-1273g-3p, and miR-
1260—may enhance early detection and monitoring
of recurrence.[24,51,54,63,71]

Histology-Specific Insights and Imaging: Histo-
logical subtype remains a key factor in guiding genetic
testing and treatment. BRCA1/BRCA2 mutations are
mostly linked to serous tumors, while LS-related MMR
genes (MSH2, MLHI1, MSH6, PMS2) can be found in
clear cell and endometrioid subtypes.[44,46] MSI-H/
MMR-D status predicts immunotherapy responsive-
ness, expanding treatment options beyond platinum-
based chemotherapy and PARPi.[44] Although TVUS
continues to be the standard for surveillance, its low
sensitivity highlights surgical prevention as the main-
stay. Digital tools and reminder systems may indirectly
support follow-up and adherence.[61,67]

Therapeutic Approaches and Molecular Profil-
ing: Treatment approaches increasingly integrate HRD
status and detailed molecular profiling to optimize
outcomes. Trials such as OlympiA and SOLO demon-
strate significant survival benefits with PARPi main-
tenance therapy in BRCA1/BRCA2 and HRD-positive
ovarian cancers.[16,34] Recent evidence suggests that
SVhigh tumors with high HRD scores may benefit
from combined PARPi and immunotherapy regimens,
driven by STING pathway activation and PD-L1 up-
regulation.[9] Rare histologies with high tumor mu-
tational burden (TMB) or MSI-H/MMR-D features—
including carcinosarcomas or clear cell variants with
POLE mutations—may also respond to checkpoint
inhibitors.[72] Molecular profiling tools—such as SV
burden analysis, BRCAness features, and LOH sig-
natures—refine treatment selection, while PRS may

Turk J Oncol 2025;40(4):332-348
doi: 10.5505/tj0.2025.4643

further support risk prediction when combined with
monogenic and founder-specific data.[10,37]

Best Practices and Future Directions: Consensus
across major guidelines (ESMO, EMQN, ASCO) un-
derscores the need for broader panel testing, timely
RRSO, and integration of HRD and MSI status into
treatment planning. Proactive counseling is critical to
address psychosocial barriers and promote adherence.
Local implementation should adapt to population-spe-
cific factors, such as founder mutations—e.g., the 23%
BRCA1/2 prevalence in the Bahamas—and disparities
in genetic testing uptake.[11,39]

Effective management of hereditary ovarian can-
cer depends on coordinated genetic counseling, timely
risk-reducing surgery, tailored surveillance, and ad-
vanced molecular profiling, with immunotherapy
options incorporated when appropriate. Continued
research into epigenetic and non-coding RNA bio-
markers, along with equitable access to multigene pan-
els, may further refine prevention and treatment strate-
gies for individuals at increased risk.

Management of Other Organ Involvement and
Syndromic Variants

Multi-Organ Risk Landscape: Hereditary cancer
syndromes extend well beyond breast and ovarian
malignancies. Risk estimates, syndromic associations,
and other cancer risks for relevant genes are sum-
marized in Table 1 (95% CI, HR/OR as appropriate).
[17] Variants in BRCA2, ATM, CHEK2, PALB2, and
CDKN2A significantly elevate the risk of developing
prostate, pancreatic, gastric, melanoma, and other
solid tumors. These cancers are not only more likely
to occur at an earlier age but also tend to display more
aggressive histologies, highlighting the urgent need
for awareness and proactive screening in individuals
with these genetic variants.[12,37] Prostate cancer is
particularly significant for BRCA2 carriers, with life-
time risk estimates ranging from 15% to 60%.[38]
supported by guideline-based estimates (HR 2.6-4.5;
95% CI varies across cohorts; EMQN).[17] and a
higher likelihood of high-grade, early-onset disease.
PSA testing and digital rectal exam (DRE) are recom-
mended starting at ages 40-45, tailored to genotype
and family history.[16,73] Pancreatic cancer risk also
increases among ATM, PALB2, and BRCA carriers,
with synthetic lethality-based agents such as DNA-
PKc and ATR inhibitors offering promising thera-
peutic avenues.[50] Other malignancies—including
gastric, melanoma, lung, and mesothelioma—have
demonstrated variable links to these genes.[74,75]
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Lynch Syndrome and Gynecologic Implications:
Lynch Syndrome (LS) is the most common heredi-
tary colorectal and endometrial cancer syndrome,
driven by MLHI1, MSH2, MSH6, and PMS2 variants.
Lifetime endometrial cancer risk can range from 33%
to 61%, depending on the gene subtype.[46] Colo-
noscopy starting at age 20-25, repeated every 1-2
years, is central to mitigating colorectal cancer risk.
[47] Risk-reducing hysterectomy with or without
RRSO may be recommended for women with high-
risk profiles.[16,34] MSI-H/MMR-D status strongly
predicts immunotherapy responsiveness, with clear
cell ovarian and carcinosarcoma subtypes harboring
POLE mutations demonstrating durable responses to
checkpoint blockade.[44,72]

Genetic Counseling and Founder Patterns:
Comprehensive genetic counseling remains critical,
especially in complex cases like multiple interacting
germline variants (MINAS) or mosaicism, which add
uncertainty to individual risk estimates.[76] Founder
mutations and family clustering can significantly shape
local panel design; for instance, PMS2 exon deletions
identified in Qatar and RAD51D variants in certain
families illustrate how regional founder effects shape
screening pathways.[49,58] For LS, surveillance often
includes TVUS, endometrial biopsy, and CA-125 mea-
surements, though their mortality benefit is debated.
[46] Emerging epigenetic and non-coding RNA mark-
ers—such as RASSF1A and CYB5R4 hypermethylation
or the miR-1260 family—could refine risk prediction
and enable earlier detection.[24,51,52,54,62,63]

Therapeutic Stratification and Molecular Pro-
filing: Emerging treatment strategies increasingly
integrate HRD status, MSI-H/MMR-D classification,
and TME features to guide the selection of PARPi or
immunotherapy pathways. Recent evidence demon-
strates that HRD-positive tumors with high SV bur-
den exhibit upregulated PD-L1 expression, support-
ing the synergy of checkpoint blockade.[9] Kumar
et al.[41] further showed how PARP inhibition can
activate the cGAS-STING pathway, enhancing tu-
mor immunogenicity.[41] Molecular profiling now
routinely combines PRS, SV mapping, and BRCAness
features to strengthen individualized treatment path-
ways.[9,10,23,37] Major guidelines (ESMO, EMQN,
ASCO) emphasize integrating comprehensive panel
results, functional reclassification, and population-
specific founder data within a multidisciplinary con-
text. Real-world tools and digital workflows contin-
ue to support patient engagement and adherence to
long-term management.[67,77]
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Overall, effective management of multi-organ he-
reditary cancer risks requires a syndromic approach
that aligns gene-specific screening, appropriate risk-
reducing surgeries, tailored surveillance, and personal-
ized therapies — including immunotherapy or synthet-
ic lethality-based regimens where indicated. Equitable
access, robust psychosocial support, and culturally
adapted testing panels remain essential for translating
advances in precision oncology into meaningful sur-
vival benefits for diverse patient populations.

PSYCHOSOCIAL, FAMILY, AND EQUITY
PERSPECTIVES IN HEREDITARY CANCER
MANAGEMENT

The ethical and psychosocial landscape of HBOPC
management extends far beyond genetic risk calcula-
tion — it significantly shapes patient well-being, fam-
ily dynamics, and equitable access to care. As multi-
gene panels, functional reclassification, and biomarker
testing continue to expand, the emotional, social, and
systemic factors to consider become increasingly com-
plex. These factors must be carefully addressed to de-
liver genuinely patient-centered precision oncology.

Psychological Burden and Stigma

Genetic testing can increase distress through uncer-
tainty, fear, and perceived social stigma. Studies report
that up to 66% of hereditary cancer syndrome carriers
experience anxiety or depression related to their test
results, with VUS findings causing particular worry
and decisional paralysis.[26,78] Felt stigma — includ-
ing fears of insurance or employment discrimination
— often discourages disclosure of results, especially in
regions lacking robust protective laws.[28] The fear of
stigma, particularly concerns about discrimination in
insurance or job opportunities, frequently leads indi-
viduals to avoid disclosing their results. This is espe-
cially prevalent in regions that lack strong legal protec-
tions. It’s crucial to address these issues to encourage
openness and support for those affected. Protective
factors like optimism, strong social support networks,
and tailored decision-support tools such as RealRisks
or Tailored Counseling and Navigation (TCN) inter-
ventions have been shown to buffer emotional harm
and reduce threat perception.[67,79]

Family Communication, Reproductive Choices,
and Informed Consent

Cascade testing transforms genetic risk from an in-
dividual concern to a family-wide responsibility. Yet,
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many probands struggle to communicate risk: Up to
20% decline cascade outreach or withhold informa-
tion from relatives.[38,80,81] Cultural norms, gen-
der dynamics, and fear of blame or stigma further
complicate these conversations.[28,82] Male carriers
may especially underestimate their own risk, lower-
ing uptake among sons or brothers. Reproductive
planning adds another deeply personal layer. Preim-
plantation genetic diagnosis (PGD) is increasingly
discussed as a means to prevent mutation transmis-
sion.[83,84] While direct-to-consumer (DTC) test-
ing for minors remains ethically contentious due to
its unclear psychological impact.[85] Clear, written
informed consent should address these tensions,
empowering patients to make choices aligned with
their values while minimizing family conflict.[86,87]
Emerging biomarkers and epigenetic data also in-
troduce new communication challenges, as plasma
methylation or non-coding RNA results need to be
disclosed carefully to avoid undue anxiety in unaf-
fected relatives.[51,62,63]

Counseling Quality, Access Barriers, and Global
Inequities

Guidelines from ASCO, ESMO, and EMQN increas-
ingly emphasize comprehensive, culturally sensitive
genetic counseling. However, implementation in prac-
tice often falls short. Infrastructure and workforce
shortages persist in underserved regions, from sub-Sa-
haran Africa to the Caribbean, where limited labora-
tory capacity, high test costs, and shortages of trained
counselors restrict access to timely testing and result
interpretation.[39,55] Cost and insurance coverage re-
main major obstacles in both low- and high-income
settings.[43,88] Racial and gender disparities further
limit cascade testing uptake; minority groups and male
relatives continue to be underrepresented in outreach
and follow-up.[38,57,82] Several program-level inno-
vations illustrate how standardized protocols and pro-
active psychosocial screening can improve care qual-
ity — for example, the BRCA Quality Improvement
Dissemination Program (BQIDP) and tools like the
NCCN Distress Thermometer.[77,78,89] Yet digital
interventions, chatbots, and remote counseling must
be equitably designed, or they risk excluding com-
munities with limited internet access and/or limited
language support.[67,90] Addressing workforce gaps,
strengthening counselor training, and embedding
psychosocial screening into routine workflows will
be essential to align real-world practice with guide-
line ideals.[57,89] Functional support for interpreting
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VUS and multi-omic results are equally important to
sustain patient trust in precision medicine.[29]

The rapid evolution of hereditary cancer diagnos-
tics must be matched by robust and equitable psycho-
social frameworks. This means integrating resilience-
building and mental health supports within genetic
counseling, ensuring cascade testing remains family-
centered yet culturally sensitive, and tackling struc-
tural barriers that limit access for vulnerable popu-
lations. As international guidelines converge, policy
implementation must bridge the gap so that precision
oncology’s benefits do not come at the cost of hidden
psychosocial harms — nor perpetuate disparities in
who can truly benefit.

FUTURE DIRECTIONS AND IMPLEMENTATION
STRATEGIES

Al-Supported Variant Classification and Poly-
genic Risk Scores (PRS)

The rapid growth of Al-powered bioinformatics is
transforming how VUS are resolved in hereditary can-
cer syndromes. Guidelines from ASCO, ESMO, and
EMQN highlight that the broader adoption of multi-
gene panels demands faster and more inclusive vari-
ant classification workflows.[16,17,34] Recent studies
demonstrate that machine learning approaches—such
as k-nearest neighbors (KNN), decision trees, and
integrated scoring algorithms—can predict BRCAI/
BRCA2 negativity with high accuracy, reaching ap-
proximately 93%.[18] Tools like Sophia DDM and Mu-
tationTaster accelerate functional confirmation, while
locally curated population databases —such as those
developed for underrepresented populations in the
Caribbean, Tanzania, or Turkey—reduce disparities
by improving variant interpretation.[19,39,55] Epigen-
etic factors—including DNA methylation, LOH, and
miRNA signatures—are increasingly integrated into
these models to refine “BRCAness” features, enhancing
predictions for synthetic lethality and targeted thera-
pies.[10,24] PRS further complement monogenic panel
testing, with evidence showing that adding PRS signifi-
cantly improves risk stratification—especially among
BRCA2 carriers.[37] The challenge now is to embed
PRS into clinical workflows without widening existing
disparities, an area where decision-support tools like
RealRisks have shown early promise.[67]

Real-World Data and International Sharing
Large-scale RWD initiatives help bridge the gap be-
tween controlled trials and the diverse realities of he-
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reditary cancer populations. Biobanks such as the UK
Biobank and Estonian Biobank have shown that many
mutation carriers lack classical family history trig-
gers, highlighting the need for broader population-
based screening.[7,37,91] RWD refines risk models,
clarifies VUS reclassification, and illuminates founder
mutation patterns across different regions and ethnic
groups.[7,21,47] Cross-border data pooling and har-
monized variant databases are critical for balanced
classification and for reducing false negatives in un-
derrepresented communities.[14,65] Studies such as
the Breast Cancer Family Registry (BCFR) demon-
strate how integrating methylation and miRNA pro-
files adds functional nuance to variant interpretation,
while microsatellite instability (MSI) testing innova-
tions further enrich multi-omic datasets.[44,62,92] As
digital platforms expand, tools like chatbots and risk-
notification pilots emphasize that public trust and
clear consent remain as critical as advanced informat-
ics pipelines.[61,93] Robust governance frameworks
and transparent data-sharing policies will remain key
to ensuring that international data harmonization
genuinely translates into better risk prediction and
fair access in hereditary cancer care.

National-international Guideline Harmoniza-
tion and Implementation Strategies

Aligning next-generation diagnostics with practi-
cal policy frameworks is essential for delivering in-
clusive hereditary cancer care. Although NCCN,
ESMO, NICE, and ASCO share core principles, prac-
tical implementation must reflect local genomic di-
versity and health system capacity.[16,17,34] Stud-
ies show that rigid pedigree-only criteria often miss
high-risk individuals; dynamic updates that integrate
PRS, regional variant frequencies, and founder muta-
tion data are increasingly needed to close these gaps.
[21,37] Policy frameworks should systematically ad-
dress gender- and culture-related disparities in test-
ing uptake, invest in counselor training pipelines,
and fund functional VUS reclassification initiatives.
[14,87] The integration of non-invasive biomarkers—
such as methylation or miRNA signatures—into early
detection guidelines will require rigorous clinical
validation and sustainable reimbursement structures
to ensure broad access.[24,25,51,52,62,63,71] Practi-
cal examples, including Sweden’s direct risk-notifica-
tion model and NCCN-based quality improvement
programs, illustrate scalable pathways that can align
precision tools with population-specific needs while
sustaining public trust and cost-effectiveness.[77,93]
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In summary, the next decade of hereditary cancer
prevention and care will depend on aligning advanced
bioinformatics, robust real-world data integration, and
culturally adapted policy frameworks. Doing so prom-
ises to shrink diagnostic gaps, personalize risk predic-
tion, and transform precision oncology’s potential into
measurable survival gains for diverse populations.

Limitations

Most of the evidence synthesized in this review is
derived from studies conducted in high-income
countries, where access to multigene testing, infra-
structure, and trained consultants is more readily
available. This geographic concentration of data in-
troduces an inherent bias, as the epidemiology, vari-
ant spectrum, and implementation challenges in
low- and middle-income countries (LMICs) remain
underexplored. Although important contributions
have emerged from underrepresented regions—such
as reports from the Caribbean and Tanzania—these
studies are still relatively few in number and often
limited in sample size. Consequently, risk estimates,
variant classification rates, and psychosocial out-
comes summarized here may not fully capture the re-
alities of health systems with constrained resources.
Differences in insurance coverage, cultural norms,
and workforce capacity further limit the generaliz-
ability of current recommendations. Addressing this
imbalance will require not only more region-specific
research but also coordinated support from global
organizations. In this context, initiatives supported
by WHO, IARC, UNDP, and international or private
foundations can play an important role in bridging
resource gaps, enabling more inclusive testing and
counseling programs in LMICs.

CONCLUSION

HBOPC management has progressed into a truly mul-
tidisciplinary, multi-omic, and real-world data-driven
field that integrates advanced genomic testing, refined
variant classification, and nuanced psychosocial frame-
works. While BRCA1/BRCA2 remain the cornerstone,
the expanding role of non-BRCA genes, region-specific
founder mutations, and PRS demands culturally sensi-
tive counseling and adaptable testing strategies.

As illustrated in the Figure 1, future pathways hinge
on robust multigene panels, Al-supported reclassifica-
tion, and the promise of epigenetic and miRNA bio-
markers—yet these innovations must be validated and
implemented with equitable access in mind.
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Table 1 (cont.) Summary of selected high- and moderate-penetrance genes associated with hereditary breast, ovarian, pancreas and prostate cancer (HBOPC), includ-

ing founder mutations, estimated lifetime risks for breast and ovarian cancers, other notable cancer risks, syndromic associations, and key management

considerations

Notes:

All estimates are synthesized from large cohort studies and meta-analyses (e.g., Kuchenbaecker et al., 2017 [36]; Dorling et al., 2021 [94]; Hu et al., 2021 [97]), European Molecular Quality Network
(EMQN) Best Practice Recommendations 2024 [17], and relevant ESMO [16] (European Society for Medical Oncology)/ASCO (American Society of Clinical Oncology) updates where applicable.

Genes are grouped together for practical clinical interpretation, as penetrance levels may vary by population, variant type, and family history.

Subtype-specific findings (e.g., TNBC prevalence in BRCA1 carriers, ER+ enrichment in BRCA2 carriers) are reported in the main text and may diverge from the standardized guideline ranges shown

here, reflecting cohort- or tumor-specific variability.

HDR/DSBR: Homologous DNA repair / Double-strand break repair; RRM: Risk-reducing mastectomy; RRSO: Risk-reducing salpingo-oophorectomy; RT: Radiotherapy; FH+: Positive family history; CMMRD:
Constitutional mismatch repair deficiency; MRI: Magnetic Resonance Imaging; Mammo: Mammography; CRC scope: Colorectal cancer screening; HR: Hazard Ratio; OR: Odds Ratio; RR: Relative Risk; Cl:

Confidence Interval; SIR: Standardized Incidence Ratio; SRR: Standardized Relative Risk; TNBC: Triple-Negative Breast Cancer; ACC: Adrenocortical Carcinoma; CNS: Central Nervous System; Gl: Gastrointes-

tinal; GIST: Gastrointestinal Stromal Tumor; MPNST: Malignant Peripheral Nerve Sheath Tumor.
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To translate such advances, risk-reducing surger-
ies, tailored surveillance, and cascade testing should be
embedded within supportive ethical and psychosocial
infrastructures. Cross-border data sharing, inclusive
variant databases, and harmonized global guidelines
remain essential to bridge gaps between research and
daily practice.

However, the translation of these advances into
routine clinical practice continues to be challenged by
high costs, limited infrastructure, and the shortage of
trained genetic consultants—factors that must be ad-
dressed in parallel with scientific progress to ensure
sustainable and equitable implementation.

Ultimately, the full impact of this evolving HBOPC
paradigm will only be realized when every at-risk fam-
ily benefits equally from precision medicine, as our
multidimensional approach underscores.
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