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SUMMARY

Exosomes and their contents play a vital role in forming a unique communication system that carries 
and transmits signal molecules, which alter the physiological state of cells and are linked to the on-
set and progression of numerous diseases including cancers. Focusing on exosomal cargo, microRNAs 
(miRNAs), which are small non-coding, single-stranded RNAs that regulate gene expression of target 
genes, are suggested to be transferred via exosomes in a selective manner that facilitates cancer progres-
sion and dissemination. In this context and through ongoing cancer research, researchers have currently 
been focusing on exosomal microRNA as a specific communication message delivered from cancer cells 
to the other cells that plays a crucial role in the immune response, tumor migration, tumor cell invasion, 
and development of metastasis In this review, we aim to evaluate the expected role of exosome-derived 
microRNAs in the development of cancer metastasis and their possible role of molecular markers in 
metastasis sites by the current literature on cancer research.
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INTRODUCTION

Exosomes are subcellular vesicles with a diameter of 
30–100 nm, surrounded by a lipid bilayer membrane. 
They have been identified in almost all bodily fluid, in-
cluding blood, sweat, tear, urine, saliva, breast milk, as-
cites, and cerebrospinal fluid. Exosomes show hetero-
geneous compositionconsisting of a complex array of 
proteins, lipids, and nucleic acids (DNA, mRNA, and 
miRNA) found both inside and on their surface, re-
flecting the characteristics of the cell type that produced 
them. Exosomes are known to play a vital role in estab-
lishing a unique communication system throughcarry-
ing and transmitting signaling molecules that alter the 
physiological state of the cells. They are also linked to 

the onset and progression of various diseases,including 
cancer. In this context, researchers, in an ongoing can-
cer research, have revealed their functions in immune 
response, tumor migration, and tumor cell invasion.[1]

Focusing on the exosomal cargo, scientists have 
currently been concentrating on exosomal miRNA 
as a specific communication message delivered from 
cancer cells to other cells after many years of research 
on the roles of miRNAs in cancer biology and therapy. 
This exosomal miRNA has an important role in the 
proliferation and migration of the tumor cell. MicroR-
NAs (miRNAs) are small [19–25 nucleotides), non-
coding, single-stranded RNAs that regulate gene ex-
pression by binding imperfectly to the 3′ untranslated 
region (UTR) of target genes.[2,3] Over than 60% of all 
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human genes are suggested to be directly regulated by 
miRNAs, as a single miRNA can target several hundred 
genes, and a single target gene generally contains mul-
tiple miRNA binding sites.[4]

In addition to their advantages in terms of quan-
tity, quality, and stability, several studies have reported 
significant variations in the levels of exosomal miRNA 
and free circulating miRNA in healthy individuals and 
those with pathological conditions including cancer. 
However, no significant differences were detected in 
their levels among healthy individuals.[5–7] These 
findings suggest that the selective transfer of miR-
NAs through exosomes facilitates cancer progression 
and dissemination. The above discussed observations 
have recently led scientists and researchers to focus on 
the significance of investigating the role of exosomal 
miRNAs in cancer biogenesis and progression. In the 
present review, we will examine the recent studies on 
exosomal miRNAs, which are suggested to play an 
important role in cancer metastasis in various cancer 
types, and explore the potential mechanisms underly-
ing their involvement in the progression of metastasis.

THE POTENTIAL MECHANISMS OF 
EXOSOMAL miRNAs IN METASTASIS

The studies in the last decades have supported the ear-
ly ideas regarding metastasis evolution, known as the 
“seed and soil” hypothesis, which held that cancer cells 
seed metastasis through a series of orderly steps to a 
compatible tissue microenvironment.[8] These steps 
can be summarized as the loss of cellular adhesion, in-
creased motility and invasiveness, entry and survival in 
the circulation, exit into new tissue, and colonization of 
a distant site.[9] Because the molecular process under-
lying tumor metastasis is still complex and not fully un-
derstood, numerous research published since 2007 have 
demonstrated the function of miRNA in activating or 
preventing metastasis at various stages of the metastatic 
pathway.[10–12] In the same context, various studies 
have highlighted the role of cancer secreted miRNAs 
by exosomes in controlling many cellular components 
of the tumor microenvironment, facilitating metasta-
sis.[12] Although all mechanisms are interrelated, they 
can be categorized as follows for better clarification: 

Promoting Angiogenesis and Vascular 
Permeability
Angiogenesis is the process of generating new blood 
capillaries from the existing vasculature. The role of this 
process is crucial in several physiological activities in-

cluding embryonic development, female reproductive 
processes, and tissue repair. It also plays a significant 
function in pathological states such as inflammatory 
disorders and cancer.[13] The basic steps of sprouting 
angiogenesis include enzymatic degradation of capil-
lary basement membrane, proliferation of endothelial 
cells (ECs), directed migration of ECs, tubulogenesis 
(ECs tube formation), vessel fusion, vessel pruning, 
and pericyte stabilization.[14] 

To summarize the molecular mechanism of angio-
genesis, hypoxia-inducible factor-α (HIFα) is reported 
to have a crucial role as a transcription factor in the 
signaling processes associated with angiogenesis. HIFα 
initiates the activation and subsequent release of vas-
cular endothelial growth factor (VEGF), which then 
binds to its receptors VEGFR1 and VEGFR2 on en-
dothelial cells (ECs), triggering downstream signaling 
pathways (ERK, p38 MAPK, and p125FAK, etc.) that 
lead to the activation of endothelial cells.

The activation of endothelial cells (ECs) is medi-
ated by numerous secreted factors, including matrix 
metalloproteinases (MMPs), which is important in fa-
cilitating EC migration and promoting vascularization. 
In addition to HIFα, other transcription factors such 
as Activator Protein-1 (Ap1) and Specificity Protein-1 
(Sp1) have been suggested to exert regulatory effects 
on VEGF expression by binding to its promoter region. 
Conversely, NFκB is known to facilitate the upregula-
tion of VEGF, thus enhancing the process of angio-
genesis. Furthermore, the potential contribution of 
the SMAD and NOTCH signaling pathways has been 
proposed in the stimulation of the migration of endo-
thelial cells and the promotion of angiogenesis.

Poliseno et al.[15] were the first to propose the 
possible participation of microRNAs (miRNAs) in 
the process of angiogenesis in 2006. Their observa-
tion of the regulatory functions of certain miRNAs in 
modulating the expression of receptors for angiogenic 
factors supported their hypothesis. Subsequently, var-
ious studies investigated the miRNAs as a component 
of exosomes, which are considered an important in-
tercellular communication mode in cancer progres-
sion to explore their involvement in promoting an-
giogenesis and vascular permeability and to explore 
their target genes. 

Researchers suggested that specific miRNAs in na-
sopharyngeal carcinoma may contribute to the sup-
pression of testis-specific gene antigen (TSGA10) ex-
pression following their transfer from cancer cells to 
endothelial cells (ECs) via exosomes. TSGA10 is known 
to closely interact with hypoxia-inducible factor-1 
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(HIF-1α) and exert potent inhibitory effects on tumor 
angiogenesis and metastasis.[16–18] The inhibition 
of SMAD4 and STAT6 expression is another possible 
target of exosomal miRNAs in which STAT6 depletion 
reduces the inhibitory effects of interleukin-13 (IL-13) 
on human coronary artery endothelial cell migration 
and tube formation.[19] In colorectal cancer, exosomal 
miR-25-3p was shown to selectively target the tran-
scription factors Kruppel-like factor KLF2 and KLF4, 
leading to the down regulation of ZO-1, Occludin, and 
Claudin5, and the up regulation of VEGFR2.[20] Simi-
larly, miR-182-5p employs a similar mechanism to pro-
mote vascular permeability and angiogenesis in glio-
blastoma.[21] Targeting of prolyl-hydroxylase (PHD1 
and PHD2) and the consequent accumulation of (HIF-
1α) in endothelial cells by exosomal miR-23a enhances 
angiogenesis process in lung cancer.[22]

Mediating the Induction of EMT
Exosomal miRNAs are well-recognized as the compo-
nents of complex regulatory networks that facilitate 
the transition in gene expression from an epithelial 
to a mesenchymal phenotype, a process described as 
the epithelial-to-mesenchymal transition (EMT). This 
transition is pivotal in driving the malignant trans-
formation of epithelial cancer cells and promoting 
metastasis.[23,24] In this process, epithelial cancer 
cells lose the expression of epithelial markers, such 
as E-cadherin, occludin, claudins, ZO-1, and con-
nexins, while they acquire mesenchymal markers, in-
cluding N-cadherin, vimentin, and fibronectin. These 
morphological and molecular alterations enhance the 
metastatic potential of cancer cells.[25] Numerous mo-
lecular pathways have been identified to have involved 
in exosomal miRNAs in the regulation of epithelial-to-
mesenchymal transition (EMT). The activation of the 
Wnt/β-catenin signaling pathway, which is a trigger of 
the EMT process, is one of the most frequently targeted 
pathways by exosomal miRNAs.[26] Exosomal miR-
NAs may also regulate additional signaling pathways, 
including PI3K/AKT and ERK pathways.[27,28] 

As previously discussed, cancer-secreted miRNAs 
may promote the formation of a pre-metastatic niche 
by downregulating the Krüppel-like factor-2 (KLF2) 
and Krüppel-like factor-4 (KLF4) genes, members of 
the zinc finger-containing transcription factor family. 
These factors regulate the expression of tight junction 
(TJ) proteins, including ZO-1, occludin, and Claudin5, 
as well as the expression of VEGFR2 in endothelial 
cells.[20] In the similar context, the suppressing Krev 
interaction trapped protein-1 (KRIT1), key regulator 

of endothelial cell–cell junctions,[29] and subsequent-
ly activation of the β-Catenin signaling pathway rep-
resent another proposed mechanism through which 
exosomal miRNAs contribute to EMT process.[30] En-
dothelial junction integrity could also be compromised 
by the direct repression of p120 expression through 
specific exosomal miRNAs (exomirs).[31] Addition-
ally, the down-regulation of the tumor suppressor gene 
CUGBP Elav-Like Family Member 2 (CELF2), via WW 
domain-containing oxidoreductase (WWOX) provides 
a further molecular mechanism underlying the role of 
exosomal miRNAs released from cancer-associated fi-
broblasts (CAFs) in colorectal cancer.[32]

Promoting Migration, Invasion, and Metastasis
The two distinct patterns of invasive growth are cur-
rently recognized as the collective cell migration and 
single-cell migration (also known as individual mi-
gration). In collective cell migration, the entire clus-
ters of cancer cells infiltrate the surrounding tissues 
as cohesive units, either originating from or detach-
ing from the primary tumor mass. These cells remain 
interconnected through adhesion molecules such 
as cadherins and intercellular gap junctions. In this 
process, tumor cells utilize integrins to form focal 
connections with the actin cytoskeleton, facilitating 
the proteolytic degradation of the extracellular ma-
trix (ECM). This degradation creates a permissive 
environment for tumor invasion, which is essential 
for effective tumor cell migration. This mechanism 
is crucial for ensuring the effective migration of tu-
mor tissue. In contrast, single-cell invasion involves 
independent migration of individual tumor cells into 
the surrounding tissues, which can occur through 
mesenchymal, and amoeboid movement modes. The 
transitions between these phenotypes are often driven 
by the changes in the activity of specific cellular mol-
ecules, allowing tumor cells to adapt to the unique 
characteristics of their microenvironment.[33]

A critical component of invasion involves the 
enzymatic breakdown of the extracellular matrix 
(ECM) and its components, facilitated by enzymes 
such as matrix metalloproteinases (MMPs). MMPs 
also play a crucial part in the process of invasion in 
addition to their significant contribution to cell pro-
liferation, survival and angiogenesis. Furthermore, 
the initiation of distinct signaling pathways, such as 
the epidermal growth factor receptor (EGFR) sig-
naling pathway and phosphatidylinositol 3-kinase 
(PI3K) pathway, stimulates the promotion of cancer 
cell proliferation and invasion.[34,35]
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Numerous studies suggested that the exosomal 
microRNAs (miRNAs) regulate key cellular processes 
involved in cancer cell dissemination and metastasis, 
including migration and invasion. To exemplify, the 
exosomal miRNAs have been shown to target vascular 
endothelial growth factor A (VEGFA) in ovarian can-
cer cells, thereby influencing these processes.[36] Fur-
thermore, cancer-derived exosomal microRNAs are 
implicated in extracellular matrix (ECM) remodeling 
and metastasis by activating cancer-associated fibro-
blasts (CAFs), which play a critical role in tumor pro-
gression.[37,38] Conversely, CAFs can enhance me-
tastasis by secreting miRNAs via their own exosomes, 
which are subsequently delivered to cancer cells. This 
exchange promotes stemness, epithelial-to-mesenchy-
mal transition (EMT), migration, and invasion in can-
cer cells.[39–42]

Tumor Microenvironment Remodeling
The tumor microenvironment (TME) is a complex 
and dynamic structure comprising various cell types 
embedded within a modified extracellular matrix 
(ECM).[43] Tumor-derived exosomes and their cargo 
play a pivotal role in mediating intercellular commu-
nication between tumor and non-tumor cells, thereby 
contributing to the remodeling of the TME and in-
cluding its heterogeneity. The processes facilitate tu-
mor development, invasion, and metastasis.[44] The 
effects of exosomal miRNAs on the tumor microenvi-
ronment (TME) can be categorized into two primary 
functional classifications within the context of tumor 
growth and progression.

The Process of Reshaping the Extracellular Matrix 
(ECM)
Tumor-derived exosomal miRNAs have the capacity 
to initiate a cascade of signaling pathways that drive 
the transformation of normal fibroblasts (NFs), which 
are responsible for producing the extracellular matrix 
(ECM) into cancer-associated fibroblasts (CAFs). This 
transformation alters the physiological properties of 
the ECM, creating a microenvironment conducive to 
cancer cell proliferation.[45] The activation of fibro-
blasts by cancer-driven exosomal miRNAs is associ-
ated with the upregulation of key markers including 
α-smooth muscle actin (α-SMA), fibroblast growth 
factor 2 (FGF2), and fibroblast activating protein 
(FAP).[46,47]

Over the last decade, the increasing evidence has 
highlighted the involvement of exosomal miRNAs in 
the regulation of ECM remodeling. Wang et al.[48] 

demonstrated that exosomal miR-27a from gastric 
cancer (GC) cells is transferred to fibroblasts, lead-
ing to decreased CSRP2 expression, increased α-SMA 
expression, and fibroblast differentiation into can-
cer-associated fibroblasts (CAFs). Similarly, a 2019 
study revealed that exosomal miR-124 plays a role in 
ECM remodeling by targeting sphingosine kinase 1 
(SPHK1), thereby upregulating α-SMA and FAP ex-
pression and promoting the differentiation of NFs 
into CAFs in ovarian cancer.[49] Furthermore, the 
transfer of exosomal miR-10b from colorectal can-
cer cells to fibroblasts results in the downregulation 
of PIK3CA expression, reduced activity of the PI3K/
Akt/mTOR signaling pathway, increased TGFβ and 
α-SMA expression, and the acquisition of CAF-like 
properties by fibroblasts.[50]

The Process of Mediating Inflammatory Cell 
Invasion, and Immunological Evasion
Tumor cells have the ability to disrupt the matura-
tion and differentiation of immune cells by releasing 
exosomal microRNAs, which activate multiple signal 
transduction pathways. This ultimately leads to the 
establishment of an immunosuppressive microenvi-
ronment that supports tumor proliferation. Concur-
rently, the production of inflammatory mediators by 
tumor cells such as prostaglandins and arachidonic 
acid, fosters the development of an inflammatory mi-
croenvironment. In this context, exosomal miRNAs 
contribute to the stimulation of extracellular receptor 
signaling, disruption of cell adhesion, and mainte-
nance of a chronic low-grade inflammatory state, col-
lectively facilitating the evasion of tumor cells from 
immune surveillance.[51,52]

Tumor-derived exosomal miRNAs also have the 
capacity to influence the maturation and functioning 
of dendritic cells (DCs), which serve as antigen-pre-
senting cells crucial for initiating T cell activation and 
sustaining immunological responses. To examplify, 
the tumor-derived exosomes containing up-regulated 
exosomal miR-let-7i can be internalized by myeloid 
dendritic cells (mDCs), modulating intracellular lev-
els of cytokines and signaling molecules such as IL-
6, IL-17, IL-1b, TGF-β, SOCS1, KLRK1, IFNγ, and 
TLR4, thereby suppressing immune response.[53] 
Similarly, tumor-associated macrophages (TAMs) 
represent another subset of immune cells affected by 
exosomal miRNAs, as numerous studies have demon-
strated their involvement in modulating TAM phe-
notypes.[54] For instance, in epithelial ovarian can-
cer (EOC), the transfer of exosomal miR-222-3p to 
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macrophages leads to the downregulation of SOCS3, 
which in turn promotes STAT3 phosphorylation and 
subsequent polarization of macrophages toward the 
immune-suppressive M2 phenotype.[55]

This review aims to analyze the recent studies pub-
lished in PubMed that focuses on the role of exosomal 
miRNAs in malignancies, with an emphasis on iden-
tifying the most significant exosomal miRNAs impli-
cated in metastasis across various cancer types.

EXOSOMAL miRNAs ASSOCIATED WITH 
METASTASIS

Exosomal miRNAs Associated with Metastasis 
in Breast Cancer
Santos et al.[56] demonstrated the role of exosomal 
miR-155 in the activation of epithelial-mesenchymal 
transition (EMT) markers and the downregulation of 
E-cadherin in breast cancer cells exposed to exosomes 
derived from cells with elevated miR-155 expression. 
The process was previously described in a study which 
identified the role of miR-155 in depleting C/EBPβ, 
thereby enhancing the TGF-β response and promoting 
EMT.[57] The promotion of EMT by miR-155 has been 
observed in several other cancer types in addition to 
breast cancer cells which will be further discussed.

Researchers in another study reported that exo-
somal miR-21, miR-378e, and miR-143 derived from 
cancer-associated fibroblasts (CAFs) in breast cancer, 
contribute to the enhancement of cancer stemness and 
EMT.[58] In addition, breast cancer-derived exosomal 
miR-146a has been shown to accelerate the differentia-
tion of normal fibroblasts (NF) into cancer-associated 
fibroblasts (CAFs), thereby promoting cell invasion 
and migration. miR-146a targets the TXNIP gene -a 
well-known metastasis suppressor, by modulating the 
Wnt signaling pathway.[59] Similarly, exosomal miR-
9 facilitates this transformation by influencing the ex-
pression of MMP1, EFEMP1, and COL1A1.[60]

Exosomal miR-105, on the other hand, activates 
MYC signal transduction, enabling CAFs to adapt 
to various metabolic conditions and thereby en-
hancing tumor progression.[61] Although the exact 
mechanism remains unclear, significantly elevated 
levels of exosomal miR-7641 in the plasma of breast 
cancer patients with distant metastasis suggest a po-
tential role in promoting tumor cell progression and 
metastasis.[62] Additionally, researchers in a recent 
study revealed that exosomal miR-19a in estrogen 
receptor-positive breast cancer promotes osteolytic 

bone metastasis by suppressing PTEN expression, 
which subsequently activates the NF-κB and AKT 
signaling pathways.[63]

Exosomal miRNAs Associated with Metastasis 
in Liver Cancer
Elevated serum exosomal miR-1247-3p levels corre-
late with lung metastasis in hepatocellular carcinoma 
(HCC) patients. This correlation is mediated by the 
direct targeting of B4GALT3, which subsequently 
activates the β1-integrin-NF-κB signaling pathway 
in fibroblasts.[38] In the same context, hepatoma 
cell-secreted miR-103 might be transferred into en-
dothelial cells via exosomes. This transfer leads to 
the attenuation of endothelial junction integrity by 
inhibiting the expression of VE‐Cadherin (VE‐Cad), 
p120‐Catenin (p120), and zonula occludens, ulti-
mately resulting in increased vascular permeabil-
ity and facilitating metastasis.[31] Furthermore, the 
transfer of exosomal miR-210 from HCC cells to 
endothelial cells can promote angiogenesis by target-
ing SMAD4 and STAT6 in endothelial cells.[19] The 
transmission of exosomal miR-21 to cancer-associ-
ated fibroblasts (CAFs) stimulates PDK1/Akt signal-
ing through direct targeting of PTEN. The activation 
leads to the increased expression of factors such as 
VEGF, MMP2, MMP9, bFGF, and TGF-β, thus facili-
tating the progression of angiogenesis.[64]

Exosomal miRNAs Associated with Metastasis 
in Lung Cancer
The release of exosomal miR-23a by lung cancer cells 
under hypoxic conditions has been shown to selec-
tively target prolyl-hydroxylase and the tight junction 
protein ZO-1, thereby enhancing angiogenesis and in-
creasing vascular permeability.[22] of Mao et al.[65] 
provided evidence supporting the angiogenic proper-
ties of miR-494 in non-small cell lung cancer, dem-
onstrating its effect through the activation of the Akt/
eNOS pathway following the targeting of the PTEN 
gene. In a different mechanism, exosomal miR-21 and 
miR-29 from lung cancer cells contribute to the for-
mation of an inflammatory microenvironment. These 
exosomes act as ligands for Toll-like receptors (TLRs) 
on immune cells, thereby activating a TLR-mediated 
prometastatic inflammatory response, which can pro-
mote tumor growth and metastasis.[66] Additionally, 
exosomal miR-1260b is suggested to facilitate cell inva-
sion in lung cancer cells by regulating the Wnt/-catenin 
signaling pathway through the suppression of sFRP1 
and Smad4 in lung adenocarcinoma.[67]
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Exosomal miRNAs Associated with Metastasis 
in Colorectal Cancer
Researchers in a recent study demonstrated that 
colorectal cancer (CRC) secretes exosomal miR-25-
3p, which plays a role in enhancing vascular perme-
ability and angiogenesis. This occurs through the si-
lencing of KLF2 and KLF4, leading to the disruption 
of tight junctions in endothelial cells. Consequently, 
this mechanism contributes to the formation of pre-
metastatic niches in distant organs such as lung and 
liver.[20] Elevated levels of exosomal miR-21 derived 
from the plasma of patients with colorectal cancer 
(CRC) have been found to correlate with liver metas-
tasis and TNM stages.[68,69] Moreover, a recent study 
elucidated the mechanism by which miR-21 sup-
presses Krev interaction trapped protein 1 (KRIT1) 
and activates the β-catenin signaling pathway, there-
by inducing angiogenesis and vascular permeability.
[30] Exosomal miR-92a-3p derived from CAFs may 
promote stemness, invasion, metastasis, and EMT in 
colorectal cancer by targeting tumor suppressor genes 
FBXW7 and MOAP1.[41] These findings align with 
a subsequent study which demonstrated the role of 
hepatoma-derived exosomal miR92a-3p in promot-
ing EMT and metastasis by inhibiting PTEN and ac-
tivating the Akt/Snail signaling pathway.[70] Another 
CAF-derived exosomal miRNA, miR-17-5p, increases 
CRC metastatic potential by directly targeting RUNX 
family transcription factor 3 (RUNX3) in CRC cells. 
RUNX3 interacts with the proto-oncogene MYC, 
thereby stimulating the TGF-β signaling pathway.
[71] The induction of fibroblasts to acquire the char-
acteristics of cancer-associated fibroblasts (CAFs) in 
colorectal cancer may be facilitated by exosomal miR-
10b. This outcome is achieved by inhibiting the PI3K/
Akt/mTOR pathway and promoting the production of 
transforming growth factor-beta (TGF-β) and alpha-
smooth muscle actin (α-SMA).[50]

Exosomal miRNAs Associated with Metastasis 
in Other Different Cancers
Li et al.[72] demonstrated that the hypoxic microen-
vironment can stimulate oral squamous cell carcino-
ma cells (OSCC) to produce miR-21-richexosomes, 
which are then delivered to normoxic cells, induc-
ing a pro-metastatic phenotype. The involvement of 
miR-21 in EMT and metastasis has been previously 
described, where it targets the AKT/ERK1/2 path-
way and PTEN.[28]

Angiogenesis is facilitated by the repression of a 
recently discovered target gene, testis-specific gene 

antigen 10 (TSGA10), which functions as a tumor 
suppressor in several types of malignancies. In na-
sopharyngeal cancer, exosomal miR-23a promotes 
metastasis by targeting this gene.[16,18] The study 
of Yang et al.[73] provided evidence for the role of 
exosomal miR-423-5p in inhibiting the production 
of suppressor of fused protein (SUFU), which con-
sequently affects the proliferation and migration of 
gastric cancer. Meanwhile, miR-27a derived from 
gastric cancer (GC) is transported to fibroblasts and 
promotes their differentiation into CAFs by downreg-
ulating the expression of CSRP2, a protein involved 
in regulatory processes essential for cellular differen-
tiation.[48] Several studies have suggested that mi-
crovesicles released from human renal cancer stem 
cells stimulate angiogenesis and the formation of a 
lung pre-metastatic niche.[74] Exosomal miR-155-5p 
derived from hypoxic tumor-associated macrophages 
(TAMs) plays a role in enhancing the stability of the 
transcription factor IGF1R mRNA. This, in turn, fa-
cilitates the proliferation and metastasis of renal cell 
carcinoma [RCC] cells by upregulating the phosphor-
ylation of PI3K, p85, and AKT.[27] Conversely, the 
loss of exosomal miR-148b released from cancer-as-
sociated fibroblasts (CAFs) in endometrial cancer has 
the potential to increase the expression of DNMT1. 
This process leads to changes in several molecules 
associated with epithelial-mesenchymal transition 
(EMT), including E-cadherin, N-cadherin, vimen-
tin, and fibronectin, ultimately promoting metasta-
sis of cancer cells. Enhancing the transfer of stromal 
cell-derived miR-148b may thus represent a potential 
strategy for preventing the progression of endome-
trial cancer[75] (Table 1). 

CONCLUSION

Following the discovery of exosomes and over the 
past three decades of research, our data on exosomes 
has expanded, and the functions of exosomes in dif-
ferent physiologic and pathologic conditions, includ-
ing cancer, have been explored. In this context, recent 
advancements in cancer research have highlighted the 
importance of exosomes and their cargo, particularly 
miRNAs, in cancer progression and metastasis. Sev-
eral studies indicate the critical role of exosomes as 
intercellular messengers, contributing to the remodel-
ing of both the local and distant microenvironments. 
Furthermore, exosomes can effectively trigger both 
pro-tumor and anti-tumor immunological responses; 
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Exosomal 
microRNAs

miR-155 &
miR-155-5p

miR-21

Cancer

Breast cancer\ BC

Non-small cell 
lung cancer\ 
NSCLC
Gastric cancer

Renal cell carci-
noma\ RCC
Multiple my-
eloma\ MM

Colorectal can-
cer\ CRC

Breast cancer

Hepatocellular 
carcinoma\ HCC

Lung cancer

Colorectal can-
cer\ CRC

Oral squamous 
cell carcinoma \ 
OSCC

Head and neck 
squamous cell 
carcinoma \ 
HNSCC
Multiple my-
eloma\ MM

Source

Cancer cells

Tumor associated 
macrophages 
(TAMs) 
Cancer cells

Hypoxic TAM

Cancer cells

CRC cells

CAFs
Tumor cells

HCC

Lung cancer cell 
line

Metastatic lung 
cancer cells
Plasma

CRC cells & 
plasma

Hypoxic OSCC

Hypoxic tumor 
cells

Melanoma cells

Biological activities

Epithelial-mesenchymal 
transition (EMT)
Migration, Invasion & 
Epithelial-Mesenchymal 
Transition (EMT)
Angiogenesis

Proliferation &
metastasis
Angiogenesis

Activation of cancer-as-
sociated fibroblasts CAFs, 
EMT & Invasion
EMT
Osteoclastogenesis & 
bone metastasis
Angiogenesis

Activation of toll-like 
receptor TLR-mediated 
inflammatory response, 
tumor growth&metastasis
Macrophage polarization, 
EMT & brain metastasis
Angiogenesis & vascular 
permeability

Inducing an Inflamma-
tory Pre-metastatic niche 
& liver metastasis
Migration, invasion & 
metastasis

EMT

Metastasis

Invasion

Potential 
mechanisms

Induction of TGF-β signaling and 
reduction of C/EBP-β 
Negatively Regulating RASSF4 
Expression (a tumor suppressor) 

Up-regulating VEGF Expression 
and Inhibiting c-MYB
Inhibition of (FOXO3a) Expres-
sion (a tumor suppressor gene)
Increase of IGF1R stability & acti-
vation of PI3K/AKT pathway 
Up-Regulation of VEGF-α, FGF2, 
and MMP9 & Down-Regulation 
of SOCS1-JAK2/STAT3 Signaling 
Pathway 
Down-Regulation of SOCS1 & 
Activation of JAK2-STAT3/NF-κβ 
Signaling pathway 
-
Regulation of PDCD4 protein 
levels
Activation of PDK1/AKT pathway
Up-regulating VEGF, MMP2, MMP9, 
BFGF, and TGF-β expression
Function as TLR ligands in im-
mune cells 

ERK/STAT3 signaling acceleration

KRIT1 suppression
β-catenin signaling pathway 
activation
miR-21-TLR7-Il-6 Axis targeting

Enhancing snail and vimentin 
expression; decreasing e-cad-
herin levels in OSCC cells
Targeting of PTEN via inac-
tivation of AKT and ERK1/2 
pathways
CAFs Activation by Targeting 
YOD1

Down-regulation of TIMP3 and 
up-regulation of mmp expres-
sion in fibroblast cells

Year

2015

2021

2020

2019

2021

2018

2022

2017
2021
2018
2019

2012

2023

2021
2017

2018

2016

2012

2023

2020

Refs

[56,57]

[76]

[77]

[78]

[27]

[79]

[80]

[58]
[81]
[64]
[82]

[66]

[83]

[30]
[69]

[68]

[72]

[28]

[84]

[85]

Table 1	 Overview of exosomal microRNAs and their potential mechanisms involved in cancer metastasis over the last decades
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Exosomal 
microRNAs

miR-143
miR-146a

miR-9

miR-105

miR-7641

miR-19a

miR-1247-
3p
miR-210

miR‐103

Cancer

Esophageal 
squamous 
cell carcinoma / 
ESCC
Gastric cancer
Renal cell carci-
noma\ RCC

Gastric cancer
Breast cancer

Colorectal can-
cer\ CRC

Cervical cancer

Breast cancer

Nasopharyngeal 
carcinoma\ NPC
Renal cell carci-
noma\ RCC

Breast cancer

Breast cancer

Breast cancer

Hepatocellular 
carcinoma\ HCC
Lung cancer

Colorectal can-
cer\ CRC

Hepatocellular 
carcinoma\ HCC

Source

ESCC cells

Peritoneal fluids
M2 macrophages

Plasma
Breast cancer 
cells
Colorectal can-
cer\ CRC cells

Plasma

MDA-MB-231 & 
MCF-7 cells
NPC cells

Renal cancer cells

Breast cancer 
cells
Breast cancer 
cells
(ER+) breast 
cancer cells

High-metastatic 
HCC cells
Hypoxic bone 
marrow me-
senchymal stem 
cell \BMSCs
Lung CSC

Human colon 
cancer cells

Hepatoma cell

Biological activities

Proliferation and angio-
genesis of human umbili-
cal vein endothelial cells 
HUVECs
Peritoneal metastases (PM)
Promotion of metastatic 
features of renal cell carci-
noma cells
Liver & ovarian metastasis
CAFs activation, invasion 
& metastasis
CAFs activation, EMT & 
lung metastasis

Early progression & 
metastasis

Metastatic characteristics

Inhibition of angiogene-
sis & migration
Proliferation & invasion

Induction of migration & 
vascular permeability
Tumor progression & 
metastasis
Osteolytic bone metas-
tasis in cooperation with 
IBSP
CAFs activation & lung 
metastasis ınduction
Invasion & EMT

Migration, invasion & 
metastasis

EMT promotion &
adhesion of neighboring 
metastatic cells
Increasing vascular 
permeability, tumor cell 
migration & tumor metas-
tasis promotion

Potential 
mechanisms

SPRY1 Down-regulation and 
VEGF Up-regulation

-
PTEN/AKT signaling regulation 
by PTEN-3’UTR targeting

-
WNT pathway activation by miR-
146a/TXNIP axis targeting
JAK2-STAT3/NF-κβ signaling 
activation via SOCS1 & ZBTB2 
targeting
Up-regulating PCK1 expressi-
on & down-regulating Fcgr1a 
expression
PTEN and DUSP14 down-
regulation
Regulation of PDK/AKT signaling 
pathway via MDK targeting
Down-Regulation of SOCS4 
expression, (JAK)/signaling 
inhibition & (STAT) pathway 
activation
Inhibition Of ZO-1 expression

-

-

Activation of Beta1-integrin-NF-
κβ signaling in fibroblasts
Activation of STAT3 signaling 
pathway

Interaction with fibroblast 
growth factor receptor-like 1 
(FGFRL1) leading to FGFRL1 
silencing
E-cadherin positive regulation 
and vimentin negative
regulation
Inhibition of VE-cadherin, P120-
catenin & zonula occludens 1 
expression

Year

2020

2020
2022

2020
2020

2022

2021

2019

2018

2020

2014

2021

2021

2018

2019

2020

2016

2018

Refs

[86]

[87]
[88]

[89]
[59]

[80]

[90]

[91]

[92]

[93]

[12]

[62]

[63]

[38]

[94]

[95]

[96]

[31]

Table 1	 Cont.
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Exosomal 
microRNAs

miR-23a

miR-423-5p

miR-27a

miR-494

miR-29

miR-1260b

miR-25-3p

miR-92a-3p

miR-17-5p

Cancer

Nasopharyngeal 
carcinoma\ NPC
Hepatocellular 
carcinoma\ HCC

Gastric cancer

Gastric cancer

Hepatocellular 
Carcinoma\ HCC
Breast cancer

Multiple myelo-
ma\ MM

Gastric cancer

Non-small cell 
lung cancer\ 
NSCLC
Lung adenocarci-
noma

Colorectal can-
cer\ CRC

Colorectal can-
cer\ CRC

Hepatocellular 
carcinoma\ HCC
Prostate adeno-
carcinoma
Non-small cell 
lung cancer
Colorectal can-
cer\ CRC

Source

NPC cells

M2 macrophage

Serum of gastric 
cancer patients
Gastric cancer 
cells

Plasma

RAS‑activated 
breast cancer 
cells

Serum, human 
melanoma cell 
lines & in vivo 
mice model
Peritoneal fluids

Non-small cell 
lung cancer cells 
& plasma
Plasma & lung 
adenocarcinoma 
cells
Colorectal cancer 
cells

Colorectal can-
cer\ CRC cells

HCC cells

Serum

Lung cancer cells

Plasma & colo-
rectal cancer 
tissue
CAFs

Biological activities

Angiogenesis

EMT, angiogenesis 
promotion & ıncrease of 
vascular permeability
Proliferation & migration 
of gastric cancer cells
CAFs activation, prolifera-
tion, motility & metastasis 
of cancer cells
HCC lung metastasis

Osteolytic bone metasta-
sis induction

Melanoma metastasis

Peritoneal metastases 
(PM)
Angiogenesis

Invasion

Vascular permeability & 
angiogenesis induction; 
liver & lung metastasis 
enhancing
EMT & cancer metastasis 
promotion
EMT & metastasis

EMT progression & me-
tastasis
Osteoblastic metastases

Osteoclastogenesis

Liver metastasis

COLORECTAL cancer 
metastasis

Potential 
mechanisms

TSGA10 targeting

(PTEN) & (TJP1) targeting

Inhibition of suppressor of fused 
protein (SUFU) expression
Cysteine and glycine-rich protein 
2 (CSRP2) down regulation

-

Enhancement of RANKL‑induced 
osteoclast formation & inhibition 
of bone morphogenetic protein 
2‑ by targeting semaphorin 3A
-

-

Homeodomain-interacting pro-
tein kinase 2 (Hipk2) suppression

WNT/ β-catenin signaling 
pathway regulation by SFRP1 & 
SMAD4 inhibition
KLF2 and KLF4 targeting; 
VEGFR2, ZO-1, occludin & clau-
din5 expression regulation

PI3K/AKT signaling pathway

WNT/ β-catenin pathway acti-
vation; FBXW7 & MOAP1 (tumor 
suppressor genes) inhibition
PTEN inhibition & AKT/snail 
signaling pathway activation
-

PI3K/Akt pathway inhibition via 
targeting PTEN 
-

RUNX3 targeting & TGF-β signa-
ling pathway activation

Year

2018

2023

2018

2018

2021

2023

2019

2020

2021

2020

2018

2020

2019

2020

2023

2021

2021

2020

Refs

[16]

[97]

[73]

[48]

[98]

[99]

[100]

[87]

[101]

[67]

[20]

[102]

[41]

[70]

[103]

[104]

[105]

[71]

Table 1	 Cont.
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however, in the advanced stage, exosomes derived 
from cancer cells exhibit higher levels of immune 
suppression compared with the levels in immune ac-
tivation. These findings underscore the need for fur-
ther research into the precise mechanisms governing 
exosomal cargo selection, their tissue-specific target-
ing, and the development of strategies to harness or 
modulate exosomal signaling for personalized cancer 
therapy and early detection of metastatic events.
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