

The Role of Exosomal MicroRNAs in Cancer Metastasis: An In-depth Guide

 Rana TAHAN,^{1,2} **Hülya YAZICI**^{1,3}

¹Division of Cancer Genetics, Department of Basic Oncology, İstanbul University, Institute of Oncology, İstanbul-Türkiye

²Division of Cancer Genetics, Department of Basic Oncology, İstanbul University, Institute of Heath Sciences, İstanbul-Türkiye

³Department of Medical Biology and Genetics, İstanbul Health and Technology University Faculty of Medicine, İstanbul-Türkiye

SUMMARY

Exosomes and their contents play a vital role in forming a unique communication system that carries and transmits signal molecules, which alter the physiological state of cells and are linked to the onset and progression of numerous diseases including cancers. Focusing on exosomal cargo, microRNAs (miRNAs), which are small non-coding, single-stranded RNAs that regulate gene expression of target genes, are suggested to be transferred via exosomes in a selective manner that facilitates cancer progression and dissemination. In this context and through ongoing cancer research, researchers have currently been focusing on exosomal microRNA as a specific communication message delivered from cancer cells to the other cells that plays a crucial role in the immune response, tumor migration, tumor cell invasion, and development of metastasis. In this review, we aim to evaluate the expected role of exosome-derived microRNAs in the development of cancer metastasis and their possible role of molecular markers in metastasis sites by the current literature on cancer research.

Keywords: Cancer; exosomal microRNAs; metastasis.

Copyright © 2025, Turkish Society for Radiation Oncology

INTRODUCTION

Exosomes are subcellular vesicles with a diameter of 30–100 nm, surrounded by a lipid bilayer membrane. They have been identified in almost all bodily fluid, including blood, sweat, tear, urine, saliva, breast milk, ascites, and cerebrospinal fluid. Exosomes show heterogeneous composition consisting of a complex array of proteins, lipids, and nucleic acids (DNA, mRNA, and miRNA) found both inside and on their surface, reflecting the characteristics of the cell type that produced them. Exosomes are known to play a vital role in establishing a unique communication system through carrying and transmitting signaling molecules that alter the physiological state of the cells. They are also linked to

the onset and progression of various diseases, including cancer. In this context, researchers, in an ongoing cancer research, have revealed their functions in immune response, tumor migration, and tumor cell invasion.[1]

Focusing on the exosomal cargo, scientists have currently been concentrating on exosomal miRNA as a specific communication message delivered from cancer cells to other cells after many years of research on the roles of miRNAs in cancer biology and therapy. This exosomal miRNA has an important role in the proliferation and migration of the tumor cell. MicroRNAs (miRNAs) are small [19–25 nucleotides], non-coding, single-stranded RNAs that regulate gene expression by binding imperfectly to the 3' untranslated region (UTR) of target genes.[2,3] Over than 60% of all

Received: August 13, 2025

Accepted: September 09, 2025

Online: December 26, 2025

Accessible online at:
www.onkder.org

OPEN ACCESS This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

M.Sc. Rana TAHAN

İstanbul Üniversitesi Onkoloji Enstitüsü,
Sağlık Bilimleri Enstitüsü,
Temel Onkoloji Anabilim Dalı,
Kanser Genetiği Bilim Dalı,
İstanbul-Türkiye
E-mail: rana.alhusaini@gmail.com

human genes are suggested to be directly regulated by miRNAs, as a single miRNA can target several hundred genes, and a single target gene generally contains multiple miRNA binding sites.[4]

In addition to their advantages in terms of quantity, quality, and stability, several studies have reported significant variations in the levels of exosomal miRNA and free circulating miRNA in healthy individuals and those with pathological conditions including cancer. However, no significant differences were detected in their levels among healthy individuals.[5-7] These findings suggest that the selective transfer of miRNAs through exosomes facilitates cancer progression and dissemination. The above discussed observations have recently led scientists and researchers to focus on the significance of investigating the role of exosomal miRNAs in cancer biogenesis and progression. In the present review, we will examine the recent studies on exosomal miRNAs, which are suggested to play an important role in cancer metastasis in various cancer types, and explore the potential mechanisms underlying their involvement in the progression of metastasis.

THE POTENTIAL MECHANISMS OF EXOSOMAL miRNAs IN METASTASIS

The studies in the last decades have supported the early ideas regarding metastasis evolution, known as the “seed and soil” hypothesis, which held that cancer cells seed metastasis through a series of orderly steps to a compatible tissue microenvironment.[8] These steps can be summarized as the loss of cellular adhesion, increased motility and invasiveness, entry and survival in the circulation, exit into new tissue, and colonization of a distant site.[9] Because the molecular process underlying tumor metastasis is still complex and not fully understood, numerous research published since 2007 have demonstrated the function of miRNA in activating or preventing metastasis at various stages of the metastatic pathway.[10-12] In the same context, various studies have highlighted the role of cancer secreted miRNAs by exosomes in controlling many cellular components of the tumor microenvironment, facilitating metastasis.[12] Although all mechanisms are interrelated, they can be categorized as follows for better clarification:

Promoting Angiogenesis and Vascular Permeability

Angiogenesis is the process of generating new blood capillaries from the existing vasculature. The role of this process is crucial in several physiological activities in-

cluding embryonic development, female reproductive processes, and tissue repair. It also plays a significant function in pathological states such as inflammatory disorders and cancer.[13] The basic steps of sprouting angiogenesis include enzymatic degradation of capillary basement membrane, proliferation of endothelial cells (ECs), directed migration of ECs, tubulogenesis (ECs tube formation), vessel fusion, vessel pruning, and pericyte stabilization.[14]

To summarize the molecular mechanism of angiogenesis, hypoxia-inducible factor- α (HIF α) is reported to have a crucial role as a transcription factor in the signaling processes associated with angiogenesis. HIF α initiates the activation and subsequent release of vascular endothelial growth factor (VEGF), which then binds to its receptors VEGFR1 and VEGFR2 on endothelial cells (ECs), triggering downstream signaling pathways (ERK, p38 MAPK, and p125FAK, etc.) that lead to the activation of endothelial cells.

The activation of endothelial cells (ECs) is mediated by numerous secreted factors, including matrix metalloproteinases (MMPs), which is important in facilitating EC migration and promoting vascularization. In addition to HIF α , other transcription factors such as Activator Protein-1 (Ap1) and Specificity Protein-1 (Sp1) have been suggested to exert regulatory effects on VEGF expression by binding to its promoter region. Conversely, NF κ B is known to facilitate the upregulation of VEGF, thus enhancing the process of angiogenesis. Furthermore, the potential contribution of the SMAD and NOTCH signaling pathways has been proposed in the stimulation of the migration of endothelial cells and the promotion of angiogenesis.

Poliseno et al.[15] were the first to propose the possible participation of microRNAs (miRNAs) in the process of angiogenesis in 2006. Their observation of the regulatory functions of certain miRNAs in modulating the expression of receptors for angiogenic factors supported their hypothesis. Subsequently, various studies investigated the miRNAs as a component of exosomes, which are considered an important intercellular communication mode in cancer progression to explore their involvement in promoting angiogenesis and vascular permeability and to explore their target genes.

Researchers suggested that specific miRNAs in nasopharyngeal carcinoma may contribute to the suppression of testis-specific gene antigen (TSGA10) expression following their transfer from cancer cells to endothelial cells (ECs) via exosomes. TSGA10 is known to closely interact with hypoxia-inducible factor-1

(HIF-1 α) and exert potent inhibitory effects on tumor angiogenesis and metastasis.[16-18] The inhibition of SMAD4 and STAT6 expression is another possible target of exosomal miRNAs in which STAT6 depletion reduces the inhibitory effects of interleukin-13 (IL-13) on human coronary artery endothelial cell migration and tube formation.[19] In colorectal cancer, exosomal miR-25-3p was shown to selectively target the transcription factors Krüppel-like factor KLF2 and KLF4, leading to the down regulation of ZO-1, Occludin, and Claudin5, and the up regulation of VEGFR2.[20] Similarly, miR-182-5p employs a similar mechanism to promote vascular permeability and angiogenesis in glioblastoma.[21] Targeting of prolyl-hydroxylase (PHD1 and PHD2) and the consequent accumulation of (HIF-1 α) in endothelial cells by exosomal miR-23a enhances angiogenesis process in lung cancer.[22]

Mediating the Induction of EMT

Exosomal miRNAs are well-recognized as the components of complex regulatory networks that facilitate the transition in gene expression from an epithelial to a mesenchymal phenotype, a process described as the epithelial-to-mesenchymal transition (EMT). This transition is pivotal in driving the malignant transformation of epithelial cancer cells and promoting metastasis.[23,24] In this process, epithelial cancer cells lose the expression of epithelial markers, such as E-cadherin, occludin, claudins, ZO-1, and connexins, while they acquire mesenchymal markers, including N-cadherin, vimentin, and fibronectin. These morphological and molecular alterations enhance the metastatic potential of cancer cells.[25] Numerous molecular pathways have been identified to have involved in exosomal miRNAs in the regulation of epithelial-to-mesenchymal transition (EMT). The activation of the Wnt/ β -catenin signaling pathway, which is a trigger of the EMT process, is one of the most frequently targeted pathways by exosomal miRNAs.[26] Exosomal miRNAs may also regulate additional signaling pathways, including PI3K/AKT and ERK pathways.[27,28]

As previously discussed, cancer-secreted miRNAs may promote the formation of a pre-metastatic niche by downregulating the Krüppel-like factor-2 (KLF2) and Krüppel-like factor-4 (KLF4) genes, members of the zinc finger-containing transcription factor family. These factors regulate the expression of tight junction (TJ) proteins, including ZO-1, occludin, and Claudin5, as well as the expression of VEGFR2 in endothelial cells.[20] In the similar context, the suppressing Krev interaction trapped protein-1 (KRIT1), key regulator

of endothelial cell-cell junctions,[29] and subsequent activation of the β -Catenin signaling pathway represent another proposed mechanism through which exosomal miRNAs contribute to EMT process.[30] Endothelial junction integrity could also be compromised by the direct repression of p120 expression through specific exosomal miRNAs (exomirs).[31] Additionally, the down-regulation of the tumor suppressor gene CUGBP Elav-Like Family Member 2 (CELF2), via WW domain-containing oxidoreductase (WWOX) provides a further molecular mechanism underlying the role of exosomal miRNAs released from cancer-associated fibroblasts (CAFs) in colorectal cancer.[32]

Promoting Migration, Invasion, and Metastasis

The two distinct patterns of invasive growth are currently recognized as the collective cell migration and single-cell migration (also known as individual migration). In collective cell migration, the entire clusters of cancer cells infiltrate the surrounding tissues as cohesive units, either originating from or detaching from the primary tumor mass. These cells remain interconnected through adhesion molecules such as cadherins and intercellular gap junctions. In this process, tumor cells utilize integrins to form focal connections with the actin cytoskeleton, facilitating the proteolytic degradation of the extracellular matrix (ECM). This degradation creates a permissive environment for tumor invasion, which is essential for effective tumor cell migration. This mechanism is crucial for ensuring the effective migration of tumor tissue. In contrast, single-cell invasion involves independent migration of individual tumor cells into the surrounding tissues, which can occur through mesenchymal, and amoeboid movement modes. The transitions between these phenotypes are often driven by the changes in the activity of specific cellular molecules, allowing tumor cells to adapt to the unique characteristics of their microenvironment.[33]

A critical component of invasion involves the enzymatic breakdown of the extracellular matrix (ECM) and its components, facilitated by enzymes such as matrix metalloproteinases (MMPs). MMPs also play a crucial part in the process of invasion in addition to their significant contribution to cell proliferation, survival and angiogenesis. Furthermore, the initiation of distinct signaling pathways, such as the epidermal growth factor receptor (EGFR) signaling pathway and phosphatidylinositol 3-kinase (PI3K) pathway, stimulates the promotion of cancer cell proliferation and invasion.[34,35]

Numerous studies suggested that the exosomal microRNAs (miRNAs) regulate key cellular processes involved in cancer cell dissemination and metastasis, including migration and invasion. To exemplify, the exosomal miRNAs have been shown to target vascular endothelial growth factor A (VEGFA) in ovarian cancer cells, thereby influencing these processes.[36] Furthermore, cancer-derived exosomal microRNAs are implicated in extracellular matrix (ECM) remodeling and metastasis by activating cancer-associated fibroblasts (CAFs), which play a critical role in tumor progression.[37,38] Conversely, CAFs can enhance metastasis by secreting miRNAs via their own exosomes, which are subsequently delivered to cancer cells. This exchange promotes stemness, epithelial-to-mesenchymal transition (EMT), migration, and invasion in cancer cells.[39–42]

Tumor Microenvironment Remodeling

The tumor microenvironment (TME) is a complex and dynamic structure comprising various cell types embedded within a modified extracellular matrix (ECM).[43] Tumor-derived exosomes and their cargo play a pivotal role in mediating intercellular communication between tumor and non-tumor cells, thereby contributing to the remodeling of the TME and including its heterogeneity. The processes facilitate tumor development, invasion, and metastasis.[44] The effects of exosomal miRNAs on the tumor microenvironment (TME) can be categorized into two primary functional classifications within the context of tumor growth and progression.

The Process of Reshaping the Extracellular Matrix (ECM)

Tumor-derived exosomal miRNAs have the capacity to initiate a cascade of signaling pathways that drive the transformation of normal fibroblasts (NFs), which are responsible for producing the extracellular matrix (ECM) into cancer-associated fibroblasts (CAFs). This transformation alters the physiological properties of the ECM, creating a microenvironment conducive to cancer cell proliferation.[45] The activation of fibroblasts by cancer-driven exosomal miRNAs is associated with the upregulation of key markers including α -smooth muscle actin (α -SMA), fibroblast growth factor 2 (FGF2), and fibroblast activating protein (FAP).[46,47]

Over the last decade, the increasing evidence has highlighted the involvement of exosomal miRNAs in the regulation of ECM remodeling. Wang et al.[48]

demonstrated that exosomal miR-27a from gastric cancer (GC) cells is transferred to fibroblasts, leading to decreased CSRP2 expression, increased α -SMA expression, and fibroblast differentiation into cancer-associated fibroblasts (CAFs). Similarly, a 2019 study revealed that exosomal miR-124 plays a role in ECM remodeling by targeting sphingosine kinase 1 (SPHK1), thereby upregulating α -SMA and FAP expression and promoting the differentiation of NFs into CAFs in ovarian cancer.[49] Furthermore, the transfer of exosomal miR-10b from colorectal cancer cells to fibroblasts results in the downregulation of PIK3CA expression, reduced activity of the PI3K/Akt/mTOR signaling pathway, increased TGF β and α -SMA expression, and the acquisition of CAF-like properties by fibroblasts.[50]

The Process of Mediating Inflammatory Cell Invasion, and Immunological Evasion

Tumor cells have the ability to disrupt the maturation and differentiation of immune cells by releasing exosomal microRNAs, which activate multiple signal transduction pathways. This ultimately leads to the establishment of an immunosuppressive microenvironment that supports tumor proliferation. Concurrently, the production of inflammatory mediators by tumor cells such as prostaglandins and arachidonic acid, fosters the development of an inflammatory microenvironment. In this context, exosomal miRNAs contribute to the stimulation of extracellular receptor signaling, disruption of cell adhesion, and maintenance of a chronic low-grade inflammatory state, collectively facilitating the evasion of tumor cells from immune surveillance.[51,52]

Tumor-derived exosomal miRNAs also have the capacity to influence the maturation and functioning of dendritic cells (DCs), which serve as antigen-presenting cells crucial for initiating T cell activation and sustaining immunological responses. To exemplify, the tumor-derived exosomes containing up-regulated exosomal miR-let-7i can be internalized by myeloid dendritic cells (mDCs), modulating intracellular levels of cytokines and signaling molecules such as IL-6, IL-17, IL-1b, TGF- β , SOCS1, KLRK1, IFN γ , and TLR4, thereby suppressing immune response.[53] Similarly, tumor-associated macrophages (TAMs) represent another subset of immune cells affected by exosomal miRNAs, as numerous studies have demonstrated their involvement in modulating TAM phenotypes.[54] For instance, in epithelial ovarian cancer (EOC), the transfer of exosomal miR-222-3p to

macrophages leads to the downregulation of SOCS3, which in turn promotes STAT3 phosphorylation and subsequent polarization of macrophages toward the immune-suppressive M2 phenotype.[55]

This review aims to analyze the recent studies published in PubMed that focuses on the role of exosomal miRNAs in malignancies, with an emphasis on identifying the most significant exosomal miRNAs implicated in metastasis across various cancer types.

EXOSOMAL miRNAs ASSOCIATED WITH METASTASIS

Exosomal miRNAs Associated with Metastasis in Breast Cancer

Santos et al.[56] demonstrated the role of exosomal miR-155 in the activation of epithelial-mesenchymal transition (EMT) markers and the downregulation of E-cadherin in breast cancer cells exposed to exosomes derived from cells with elevated miR-155 expression. The process was previously described in a study which identified the role of miR-155 in depleting C/EBP β , thereby enhancing the TGF- β response and promoting EMT.[57] The promotion of EMT by miR-155 has been observed in several other cancer types in addition to breast cancer cells which will be further discussed.

Researchers in another study reported that exosomal miR-21, miR-378e, and miR-143 derived from cancer-associated fibroblasts (CAFs) in breast cancer, contribute to the enhancement of cancer stemness and EMT.[58] In addition, breast cancer-derived exosomal miR-146a has been shown to accelerate the differentiation of normal fibroblasts (NF) into cancer-associated fibroblasts (CAFs), thereby promoting cell invasion and migration. miR-146a targets the TXNIP gene -a well-known metastasis suppressor, by modulating the Wnt signaling pathway.[59] Similarly, exosomal miR-9 facilitates this transformation by influencing the expression of MMP1, EFEMP1, and COL1A1.[60]

Exosomal miR-105, on the other hand, activates MYC signal transduction, enabling CAFs to adapt to various metabolic conditions and thereby enhancing tumor progression.[61] Although the exact mechanism remains unclear, significantly elevated levels of exosomal miR-7641 in the plasma of breast cancer patients with distant metastasis suggest a potential role in promoting tumor cell progression and metastasis.[62] Additionally, researchers in a recent study revealed that exosomal miR-19a in estrogen receptor-positive breast cancer promotes osteolytic

bone metastasis by suppressing PTEN expression, which subsequently activates the NF- κ B and AKT signaling pathways.[63]

Exosomal miRNAs Associated with Metastasis in Liver Cancer

Elevated serum exosomal miR-1247-3p levels correlate with lung metastasis in hepatocellular carcinoma (HCC) patients. This correlation is mediated by the direct targeting of B4GALT3, which subsequently activates the β 1-integrin-NF- κ B signaling pathway in fibroblasts.[38] In the same context, hepatoma cell-secreted miR-103 might be transferred into endothelial cells via exosomes. This transfer leads to the attenuation of endothelial junction integrity by inhibiting the expression of VE-Cadherin (VE-Cad), p120-Catenin (p120), and zonula occludens, ultimately resulting in increased vascular permeability and facilitating metastasis.[31] Furthermore, the transfer of exosomal miR-210 from HCC cells to endothelial cells can promote angiogenesis by targeting SMAD4 and STAT6 in endothelial cells.[19] The transmission of exosomal miR-21 to cancer-associated fibroblasts (CAFs) stimulates PDK1/Akt signaling through direct targeting of PTEN. The activation leads to the increased expression of factors such as VEGF, MMP2, MMP9, bFGF, and TGF- β , thus facilitating the progression of angiogenesis.[64]

Exosomal miRNAs Associated with Metastasis in Lung Cancer

The release of exosomal miR-23a by lung cancer cells under hypoxic conditions has been shown to selectively target prolyl-hydroxylase and the tight junction protein ZO-1, thereby enhancing angiogenesis and increasing vascular permeability.[22] of Mao et al.[65] provided evidence supporting the angiogenic properties of miR-494 in non-small cell lung cancer, demonstrating its effect through the activation of the Akt/eNOS pathway following the targeting of the PTEN gene. In a different mechanism, exosomal miR-21 and miR-29 from lung cancer cells contribute to the formation of an inflammatory microenvironment. These exosomes act as ligands for Toll-like receptors (TLRs) on immune cells, thereby activating a TLR-mediated prometastatic inflammatory response, which can promote tumor growth and metastasis.[66] Additionally, exosomal miR-1260b is suggested to facilitate cell invasion in lung cancer cells by regulating the Wnt/-catenin signaling pathway through the suppression of sFRP1 and Smad4 in lung adenocarcinoma.[67]

Exosomal miRNAs Associated with Metastasis in Colorectal Cancer

Researchers in a recent study demonstrated that colorectal cancer (CRC) secretes exosomal miR-25-3p, which plays a role in enhancing vascular permeability and angiogenesis. This occurs through the silencing of KLF2 and KLF4, leading to the disruption of tight junctions in endothelial cells. Consequently, this mechanism contributes to the formation of pre-metastatic niches in distant organs such as lung and liver.[20] Elevated levels of exosomal miR-21 derived from the plasma of patients with colorectal cancer (CRC) have been found to correlate with liver metastasis and TNM stages.[68,69] Moreover, a recent study elucidated the mechanism by which miR-21 suppresses Krev interaction trapped protein 1 (KRIT1) and activates the β -catenin signaling pathway, thereby inducing angiogenesis and vascular permeability. [30] Exosomal miR-92a-3p derived from CAFs may promote stemness, invasion, metastasis, and EMT in colorectal cancer by targeting tumor suppressor genes FBXW7 and MOAP1.[41] These findings align with a subsequent study which demonstrated the role of hepatoma-derived exosomal miR92a-3p in promoting EMT and metastasis by inhibiting PTEN and activating the Akt/Snail signaling pathway.[70] Another CAF-derived exosomal miRNA, miR-17-5p, increases CRC metastatic potential by directly targeting RUNX family transcription factor 3 (RUNX3) in CRC cells. RUNX3 interacts with the proto-oncogene MYC, thereby stimulating the TGF- β signaling pathway. [71] The induction of fibroblasts to acquire the characteristics of cancer-associated fibroblasts (CAFs) in colorectal cancer may be facilitated by exosomal miR-10b. This outcome is achieved by inhibiting the PI3K/Akt/mTOR pathway and promoting the production of transforming growth factor-beta (TGF- β) and alpha-smooth muscle actin (α -SMA).[50]

Exosomal miRNAs Associated with Metastasis in Other Different Cancers

Li et al.[72] demonstrated that the hypoxic microenvironment can stimulate oral squamous cell carcinoma cells (OSCC) to produce miR-21-richexosomes, which are then delivered to normoxic cells, inducing a pro-metastatic phenotype. The involvement of miR-21 in EMT and metastasis has been previously described, where it targets the AKT/ERK1/2 pathway and PTEN.[28]

Angiogenesis is facilitated by the repression of a recently discovered target gene, testis-specific gene

antigen 10 (TSGA10), which functions as a tumor suppressor in several types of malignancies. In nasopharyngeal cancer, exosomal miR-23a promotes metastasis by targeting this gene.[16,18] The study of Yang et al.[73] provided evidence for the role of exosomal miR-423-5p in inhibiting the production of suppressor of fused protein (SUFU), which consequently affects the proliferation and migration of gastric cancer. Meanwhile, miR-27a derived from gastric cancer (GC) is transported to fibroblasts and promotes their differentiation into CAFs by downregulating the expression of CSRP2, a protein involved in regulatory processes essential for cellular differentiation.[48] Several studies have suggested that microvesicles released from human renal cancer stem cells stimulate angiogenesis and the formation of a lung pre-metastatic niche.[74] Exosomal miR-155-5p derived from hypoxic tumor-associated macrophages (TAMs) plays a role in enhancing the stability of the transcription factor IGF1R mRNA. This, in turn, facilitates the proliferation and metastasis of renal cell carcinoma [RCC] cells by upregulating the phosphorylation of PI3K, p85, and AKT.[27] Conversely, the loss of exosomal miR-148b released from cancer-associated fibroblasts (CAFs) in endometrial cancer has the potential to increase the expression of DNMT1. This process leads to changes in several molecules associated with epithelial-mesenchymal transition (EMT), including E-cadherin, N-cadherin, vimentin, and fibronectin, ultimately promoting metastasis of cancer cells. Enhancing the transfer of stromal cell-derived miR-148b may thus represent a potential strategy for preventing the progression of endometrial cancer[75] (Table 1).

CONCLUSION

Following the discovery of exosomes and over the past three decades of research, our data on exosomes has expanded, and the functions of exosomes in different physiologic and pathologic conditions, including cancer, have been explored. In this context, recent advancements in cancer research have highlighted the importance of exosomes and their cargo, particularly miRNAs, in cancer progression and metastasis. Several studies indicate the critical role of exosomes as intercellular messengers, contributing to the remodeling of both the local and distant microenvironments. Furthermore, exosomes can effectively trigger both pro-tumor and anti-tumor immunological responses;

Table 1 Overview of exosomal microRNAs and their potential mechanisms involved in cancer metastasis over the last decades

Exosomal microRNAs	Cancer	Source	Biological activities	Potential mechanisms	Year	Refs
miR-155 & miR-155-5p	Breast cancer\ BC	Cancer cells	Epithelial-mesenchymal transition (EMT)	Induction of TGF- β signaling and reduction of C/EBP- β	2015	[56,57]
	Non-small cell lung cancer\ NSCLC	Tumor associated macrophages (TAMs)	Migration, Invasion & Epithelial-Mesenchymal Transition (EMT)	Negatively Regulating RASSF4 Expression (a tumor suppressor)	2021	[76]
	Gastric cancer	Cancer cells	Angiogenesis	Up-regulating VEGF Expression and Inhibiting c-MYB	2020	[77]
	Renal cell carcinoma\ RCC	Hypoxic TAM	Proliferation & metastasis	Inhibition of (FOXO3a) Expression (a tumor suppressor gene)	2019	[78]
	Multiple myeloma\ MM	Cancer cells	Angiogenesis	Increase of IGF1R stability & activation of PI3K/AKT pathway	2021	[27]
	Colorectal cancer\ CRC	CRC cells	Activation of cancer-associated fibroblasts CAFs, EMT & Invasion	Up-Regulation of VEGF- α , FGF2, and MMP9 & Down-Regulation of SOCS1-JAK2/STAT3 Signaling Pathway	2018	[79]
	Breast cancer	CAFs	EMT	Down-Regulation of SOCS1 & Activation of JAK2-STAT3/NF- κ B Signaling pathway	2022	[80]
		Tumor cells	Osteoclastogenesis & bone metastasis	-	2017	[58]
	Hepatocellular carcinoma\ HCC	HCC	Angiogenesis	Regulation of PDCD4 protein levels	2021	[81]
	Lung cancer	Lung cancer cell line	Activation of toll-like receptor TLR-mediated inflammatory response, tumor growth&metastasis	Activation of PI3K/AKT pathway	2018	[64]
miR-21		Metastatic lung cancer cells	Macrophage polarization, EMT & brain metastasis	Up-regulating VEGF, MMP2, MMP9, BFGF, and TGF- β expression	2019	[82]
	Colorectal cancer\ CRC	Plasma	Angiogenesis & vascular permeability	Function as TLR ligands in immune cells	2012	[66]
		CRC cells & plasma	Inducing an Inflammatory Pre-metastatic niche & liver metastasis	ERK/STAT3 signaling acceleration	2023	[83]
	Oral squamous cell carcinoma \ OSCC	Hypoxic OSCC	Migration, invasion & metastasis	KRIT1 suppression	2021	[30]
			EMT	β -catenin signaling pathway activation	2017	[69]
Head and neck squamous cell carcinoma \ HNSCC				miR-21-TLR7-II-6 Axis targeting	2018	[68]
	Head and neck squamous cell carcinoma \ HNSCC	Hypoxic tumor cells	Metastasis	Enhancing snail and vimentin expression; decreasing e-cadherin levels in OSCC cells	2016	[72]
	Multiple myeloma\ MM	Melanoma cells	Invasion	Targeting of PTEN via inactivation of AKT and ERK1/2 pathways	2012	[28]
				CAF Activation by Targeting YOD1	2023	[84]
				Down-regulation of TIMP3 and up-regulation of mmp expression in fibroblast cells	2020	[85]

Table 1 Cont.

Exosomal microRNAs	Cancer	Source	Biological activities	Potential mechanisms	Year	Refs
miR-143 miR-146a	Esophageal squamous cell carcinoma / ESCC	ESCC cells	Proliferation and angiogenesis of human umbilical vein endothelial cells HUVECs	SPRY1 Down-regulation and VEGF Up-regulation	2020	[86]
	Gastric cancer	Peritoneal fluids	Peritoneal metastases (PM)	-	2020	[87]
	Renal cell carcinoma\ RCC	M2 macrophages	Promotion of metastatic features of renal cell carcinoma cells	PTEN/AKT signaling regulation by PTEN-3'UTR targeting	2022	[88]
	Gastric cancer	Plasma	Liver & ovarian metastasis	-	2020	[89]
miR-9	Breast cancer	Breast cancer cells	CAFs activation, invasion & metastasis	WNT pathway activation by miR-146a/TXNIP axis targeting	2020	[59]
	Colorectal cancer\ CRC	Colorectal cancer\ CRC cells	CAFs activation, EMT & lung metastasis	JAK2-STAT3/NF- κ B signaling activation via SOCS1 & ZBTB2 targeting	2022	[80]
	Cervical cancer	Plasma	Early progression & metastasis	Up-regulating PCK1 expression & down-regulating Fcgr1a expression	2021	[90]
miR-105	Breast cancer	MDA-MB-231 & MCF-7 cells	Metastatic characteristics	PTEN and DUSP14 down-regulation	2019	[91]
	Nasopharyngeal carcinoma\ NPC	NPC cells	Inhibition of angiogenesis & migration	Regulation of PDK/AKT signaling pathway via MDK targeting	2018	[92]
	Renal cell carcinoma\ RCC	Renal cancer cells	Proliferation & invasion	Down-Regulation of SOCS4 expression, (JAK)/signaling inhibition & (STAT) pathway activation	2020	[93]
miR-7641	Breast cancer	Breast cancer cells	Induction of migration & vascular permeability	Inhibition Of ZO-1 expression	2014	[12]
miR-19a	Breast cancer (ER+) breast cancer cells		Tumor progression & metastasis	-	2021	[62]
miR-1247-3p miR-210	Hepatocellular carcinoma\ HCC Lung cancer	High-metastatic HCC cells Hypoxic bone marrow mesenchymal stem cell \BMSCs Lung CSC	Osteolytic bone metastasis in cooperation with IBSP CAFs activation & lung metastasis induction Invasion & EMT Migration, invasion & metastasis	Activation of Beta1-integrin-NF- κ B signaling in fibroblasts Activation of STAT3 signaling pathway Interaction with fibroblast growth factor receptor-like 1 (FGFRL1) leading to FGFRL1 silencing	2018 2019	[38] [94]
miR-103	Colorectal cancer\ CRC	Human colon cancer cells	EMT promotion & adhesion of neighboring metastatic cells	E-cadherin positive regulation and vimentin negative regulation	2016	[96]
	Hepatocellular carcinoma\ HCC	Hepatoma cell	Increasing vascular permeability, tumor cell migration & tumor metastasis promotion	Inhibition of VE-cadherin, P120-catenin & zonula occludens 1 expression	2018	[31]

Table 1 Cont.

Exosomal microRNAs	Cancer	Source	Biological activities	Potential mechanisms	Year	Refs
miR-23a	Nasopharyngeal carcinoma\ NPC	NPC cells	Angiogenesis	TSGA10 targeting	2018	[16]
	Hepatocellular carcinoma\ HCC	M2 macrophage	EMT, angiogenesis promotion & increase of vascular permeability	(PTEN) & (TJP1) targeting	2023	[97]
miR-423-5p	Gastric cancer	Serum of gastric cancer patients	Proliferation & migration of gastric cancer cells	Inhibition of suppressor of fused protein (SUFU) expression	2018	[73]
miR-27a	Gastric cancer	Gastric cancer cells	CAFs activation, proliferation, motility & metastasis of cancer cells	Cysteine and glycine-rich protein 2 (CSRP2) down regulation	2018	[48]
	Hepatocellular Carcinoma\ HCC	Plasma	HCC lung metastasis	-	2021	[98]
miR-494	Breast cancer	RAS-activated breast cancer cells	Osteolytic bone metastasis induction	Enhancement of RANKL-induced osteoclast formation & inhibition of bone morphogenetic protein 2- by targeting semaphorin 3A	2023	[99]
	Multiple myeloma\ MM	Serum, human melanoma cell lines & <i>in vivo</i> mice model	Melanoma metastasis	-	2019	[100]
miR-29	Gastric cancer	Peritoneal fluids	Peritoneal metastases (PM)	-	2020	[87]
miR-1260b	Non-small cell lung cancer\ NSCLC	Non-small cell lung cancer cells & plasma	Angiogenesis	Homeodomain-interacting protein kinase 2 (Hipk2) suppression	2021	[101]
	Lung adenocarcinoma	Plasma & lung adenocarcinoma cells	Invasion	WNT/ β -catenin signaling pathway regulation by SFRP1 & SMAD4 inhibition	2020	[67]
miR-25-3p	Colorectal cancer\ CRC	Colorectal cancer cells	Vascular permeability & angiogenesis induction; liver & lung metastasis enhancing	KLF2 and KLF4 targeting; VEGFR2, ZO-1, occludin & claudin5 expression regulation	2018	[20]
			EMT & cancer metastasis promotion	PI3K/AKT signaling pathway	2020	[102]
miR-92a-3p	Colorectal cancer\ CRC	Colorectal cancer\ CRC cells	EMT & metastasis	WNT/ β -catenin pathway activation; FBXW7 & MOAP1 (tumor suppressor genes) inhibition	2019	[41]
	Hepatocellular carcinoma\ HCC	HCC cells	EMT progression & metastasis	PTEN inhibition & AKT/snail signaling pathway activation	2020	[70]
miR-17-5p	Prostate adenocarcinoma	Serum	Osteoblastic metastases	-	2023	[103]
	Non-small cell lung cancer	Lung cancer cells	Osteoclastogenesis	PI3K/Akt pathway inhibition via targeting PTEN	2021	[104]
	Colorectal cancer\ CRC	Plasma & colorectal cancer tissue	Liver metastasis	-	2021	[105]
		CAFs	COLORECTAL cancer metastasis	RUNX3 targeting & TGF- β signaling pathway activation	2020	[71]

Table 1 Cont.

Exosomal microRNAs	Cancer	Source	Biological activities	Potential mechanisms	Year	Refs
miR-10b	Hepatocellular carcinoma\ HCC	HCC cells	Cancer cell proliferation & metastasis	-	2019	[82]
	Lung cancer	A549 lung cancer cells	Invasion, EMT induction & M2 polarization of macrophages	-	2022	[106]
	Oral cancer \OC	Oral cancer cells	Invasion & migration of oral cancer cells	AKT signaling activation	2022	[107]
	Gastric cancer	Plasma	Metastasis	-	2020	[89]
miR-148b	Breast cancer	Breast cancer cells	Invasion, migration & M2 polarization of macrophages	Targeting TSC2 which controls cell growth and division	2023	[108]
	Endometrial cancer\ EC	CAFs and endometrial cancer cells	Suppression of endometrial cancer metastasis	Binding to its downstream target gene, DNMT1	2019	[75]

EMT: Epithelial-mesenchymal transition; TGF- β – Transforming growth factor- β ; C/EBP β : CCAAT/enhancer-binding protein beta; TAMs: Tumor-associated macrophages; VEGF: Vascular endothelial growth factor; RASSF4: Ras association domain family member 4; c-MYB: Member of myeloblastosis family of transcription factors; FOXO: Forkhead box transcription factors; IGF1R: Insulin-like growth factor 1 receptor; PI3K: Phosphoinositide 3-kinase; FGF2: Fibroblast growth factor 2; CAFs: Cancer-associated fibroblasts; PDCD4: Programmed cell death protein 4; PDK1: Phosphoinositide dependent protein kinase-1; AKT: Protein kinase B; MMP: Matrix metalloproteinase; SOCS1: Suppressor of cytokine signaling; JAK2: Janus kinase 2; STAT3: Signal transducer and activator of transcription 3; NF- κ B: Nuclear factor kappa B; bFGF: Basic fibroblast growth factor; TLR: Toll-like receptor; ERK/STAT3: Extracellular signal-regulated kinase / signal transducer and activator of transcription 3; KRT1: Krev interaction trapped protein 1; YOD1: Deubiquitinating enzyme; TIMP3: Tissue inhibitor of metalloproteinases 3; HUVECs: Human umbilical vein endothelial cell; SPRY1: Sprouty RTK signaling antagonist 1; PTEN-3'UTR: Phosphatase and tensin homolog 3' untranslated region; TXNIP: Thioredoxin interacting protein; ZBTB2: Zinc finger and BTB domain containing 2; PCK1: Phosphoenolpyruvate carboxykinase 1; Fcgr1a: Fc gamma receptor 1A; DUSP14: Dual specificity phosphatase 14; MDK: Midkine (heparin-binding growth factor); MDA-MB-231: Model of late-stage triple-negative breast cancer; MCF-7: Michigan cancer foundation-7 (breast cancer cell line); ZO-1: Zonula occludens; ER-: Estrogen receptor positiv; IBSP: Integrin binding sialoprotein; BMSCs: Bone marrow-derived mesenchymal stem cells; TSGA10: Testis-specific gene 10 protein; TJP1: Tight junction protein 1 (another name for ZO-1); RANKL: Receptor activator of nuclear factor kappa-B ligand; SFRP1: Secreted frizzled-related protein 1; KLF2 and KLF4: Krüppel-like factor 2 and 4; FBXW7: F-box and WD repeat domain-containing 7; MOAP1: Modulator of apoptosis 1; RUNX3: Runt-related transcription factor 3; TSC2: TSC complex subunit 2; DNMT1: DNA methyltransferase 1.

however, in the advanced stage, exosomes derived from cancer cells exhibit higher levels of immune suppression compared with the levels in immune activation. These findings underscore the need for further research into the precise mechanisms governing exosomal cargo selection, their tissue-specific targeting, and the development of strategies to harness or modulate exosomal signaling for personalized cancer therapy and early detection of metastatic events.

Conflict of Interest Statement: The authors have no conflicts of interest to declare.

Funding: The authors declared that this study received no financial support.

Use of AI for Writing Assistance: No AI technologies utilized.

Author Contributions: Concept – R.T., H.Y.; Design – R.T., H.Y.; Supervision – R.T., H.Y.; Data analysis and/or interpretation – R.T., H.Y.; Literature search – H.Y.; Writing – R.T.; Critical review – H.Y.

Peer-review: Externally peer-reviewed.

REFERENCES

1. Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, et al. The biology, function, and applications of exosomes in cancer. *Acta Pharm Sin B* 2021;11(9):2783–97.
2. Bartel DP. MicroRNAs: Target recognition and regulatory functions. *Cell* 2009;136(2):215–33.
3. Ying SY, Chang DC, Lin SL. The microRNA (miRNA): Overview of the RNA genes that modulate gene function. *Mol Biotechnol* 2008;38(3):257–68.
4. Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. *Int J Mol Sci* 2016;17(10):1712.
5. Tian F, Shen Y, Chen Z, Li R, Ge Q. No significant difference between plasma miRNAs and plasma derived exosomal miRNAs from healthy people. *Biomed Res Int* 2017;2017:1304816.
6. Zavesky L, Jandakova E, Turyna R, Langmeierova L, Weinberger V, Minar L. Supernatant versus exosomal urinary microRNAs. Two fractions with different outcomes in gynaecological cancers. *Neoplasma* 2016;63(1):121–32.

7. Nik Mohamed Kamal N, Shahidan WNS. Non exosomal and exosomal circulatory microRNAs: Which are more valid as biomarkers? *Front Pharmacol* 2019;10:1500.
8. Fidler IJ. The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. *Nat Rev Cancer* 2003;3(6):453-8.
9. Gupta GP, Massague J. Cancer metastasis: Building a framework. *Cell* 2006;127(4):679-95.
10. Ma L, Teruya Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA 10b in breast cancer. *Nature* 2007;449(7163):682-8.
11. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. Let 7 regulates self renewal and tumorigenicity of breast cancer cells. *Cell* 2007;131(6):1109-23.
12. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer secreted miR-105 destroys vascular endothelial barriers to promote metastasis. *Cancer Cell* 2014;25(4):501-15.
13. Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. *Oncogene* 2003;22(42):6549-56.
14. Adair TH, Montani JP. *Angiogenesis*. San Rafael: Morgan & Claypool; 2011.
15. Poliseno L, Tucoli A, Mariani L, Evangelista M, Citti L, Woods K, et al. MicroRNAs modulate the angiogenic properties of HUVECs. *Blood* 2006;108(9):3068-71.
16. Bao L, You B, Shi S, Shan Y, Zhang Q, Yue H, et al. Metastasis associated miR 23a from nasopharyngeal carcinoma derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. *Oncogene* 2018;37(21):2873-89.
17. Jahani M, Shahlaei M, Norooznezhad F, Miraghaee SS, Hosseinzadeh L, Moasefi N, et al. TSGA10 over expression decreases metastatic and metabolic activity by inhibiting HIF 1 in breast cancer cells. *Arch Med Res* 2020;51(1):41-53.
18. Mansouri K, Mostafie A, Rezazadeh D, Shahlaei M, Modarressi MH. New function of TSGA10 gene in angiogenesis and tumor metastasis: A response to a challengeable paradox. *Hum Mol Genet* 2016;25(2):233-44.
19. Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan Y, Zheng L, Zhuang SM. hepatocellular carcinoma cell secreted exosomal MicroRNA 210 promotes angiogenesis in vitro and in vivo. *Mol Ther Nucleic Acids* 2018;11:243-52.
20. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer derived exosomal miR 25 3p promotes pre metastatic niche formation by inducing vascular permeability and angiogenesis. *Nat Commun* 2018;9(1):5395.
21. Li J, Yuan H, Xu H, Zhao H, Xiong N. Hypoxic cancer secreted exosomal miR 182 5p promotes glioblastoma angiogenesis by targeting Kruppel like Factor 2 and 4. *Mol Cancer Res* 2020;18(8):1218-31.
22. Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, et al. Hypoxic lung cancer secreted exosomal miR 23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO 1. *Oncogene* 2017;36(34):4929-42.
23. Roche J. The epithelial to mesenchymal transition in cancer. *Cancers (Basel)* 2018;10(2):52.
24. Lin Q, Zhou CR, Bai MJ, Zhu D, Chen JW, Wang HF, et al. Exosome mediated miRNA delivery promotes liver cancer EMT and metastasis. *Am J Transl Res* 2020;12(3):1080-95.
25. Visan KS, Lobb RJ, Moller A. The role of exosomes in the promotion of epithelial to mesenchymal transition and metastasis. *Front Biosci (Landmark Ed)* 2020;25(6):1022-57.
26. Kim H, Lee S, Shin E, Seong KM, Jin YW, Youn H, et al. The emerging roles of exosomes as EMT regulators in cancer. *Cells* 2020;9(4):861.
27. Gu W, Gong L, Wu X, Yao X. Hypoxic TAM derived exosomal miR 155 5p promotes RCC progression through HuR dependent IGF1R/AKT/PI3K pathway. *Cell Death Discov* 2021;7(1):147.
28. Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, et al. Antagonism of miR 21 reverses epithelial mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. *PLoS One* 2012;7(6):e39520.
29. Glading A, Han J, Stockton RA, Ginsberg MH. KRIT 1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. *J Cell Biol* 2007;179(2):247-54.
30. He Q, Ye A, Ye W, Liao X, Qin G, Xu Y, et al. Cancer secreted exosomal miR 21 5p induces angiogenesis and vascular permeability by targeting KRIT1. *Cell Death Dis* 2021;12(6):576.
31. Fang JH, Zhang ZJ, Shang LR, Luo YW, Lin YF, Yuan Y, et al. Hepatoma cell secreted exosomal microRNA 103 increases vascular permeability and promotes metastasis by targeting junction proteins. *Hepatology* 2018;68(4):1459-75.
32. Zhang Y, Yin C, Wei C, Xia S, Qiao Z, Zhang XW, et al. Exosomal miR 625 3p secreted by cancer associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. *Pharmacol Res* 2022;186:106534.
33. Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer Invasion: Patterns and mechanisms. *Acta Naturae* 2015;7(2):17-28.
34. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. *Signal Transduct Target Ther* 2020;5(1):28.
35. Curran S, Murray GI. Matrix metalloproteinases: Molecular aspects of their roles in tumour invasion and metastasis. *Eur J Cancer* 2000;36(13 Spec No):1621-30.

36. Wang L, Zhao F, Xiao Z, Yao L. Exosomal microRNA 205 is involved in proliferation, migration, invasion, and apoptosis of ovarian cancer cells via regulating VEGFA. *Cancer Cell Int* 2019;19:281.

37. Asif PJ, Longobardi C, Hahne M, Medema JP. The role of cancer associated fibroblasts in cancer invasion and metastasis. *Cancers (Basel)* 2021;13(18):4720.

38. Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor derived exosomal miR 1247 3p induces cancer associated fibroblast activation to foster lung metastasis of liver cancer. *Nat Commun* 2018;9(1):191.

39. Yang X, Li Y, Zou L, Zhu Z. Role of exosomes in crosstalk between cancer associated fibroblasts and cancer cells. *Front Oncol* 2019;9:356.

40. Kim K, Sohn YJ, Lee R, Yoo HJ, Kang JY, Choi N, et al. Cancer associated fibroblasts differentiated by exosomes isolated from cancer cells promote cancer cell invasion. *Int J Mol Sci* 2020;21(21):8153.

41. Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial mesenchymal transition in colorectal cancer. *Mol Cancer* 2019;18(1):91.

42. Bhome R, Goh RW, Bullock MD, Pillar N, Thirdborough SM, Mellone M, et al. Exosomal microRNAs derived from colorectal cancer associated fibroblasts: Role in driving cancer progression. *Aging (Albany NY)* 2017;9(12):2666–94.

43. Brassart Pasco S, Brezillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor microenvironment: Extracellular matrix alterations influence tumor progression. *Front Oncol* 2020;10:397.

44. Huang Y, Kanada M, Ye J, Deng Y, He Q, Lei Z, et al. Exosome mediated remodeling of the tumor microenvironment: From local to distant intercellular communication. *Cancer Lett* 2022;543:215796.

45. Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, et al. Exosomal miRNAs and miRNA dysregulation in cancer associated fibroblasts. *Mol Cancer* 2017;16(1):148.

46. Alkasalias T, Moyano Galceran L, Arsenian Henriksson M, Lehti K. Fibroblasts in the tumor microenvironment: Shield or spear? *Int J Mol Sci* 2018;19(5):1532.

47. Santos P, Almeida F. Role of exosomal miRNAs and the tumor microenvironment in drug resistance. *Cells* 2020;9(6):1450.

48. Wang J, Guan X, Zhang Y, Ge S, Zhang L, Li H, et al. Exosomal miR 27a Derived from gastric cancer cells regulates the transformation of fibroblasts into cancer associated fibroblasts. *Cell Physiol Biochem* 2018;49(3):869–83.

49. Zhang Y, Cai H, Chen S, Sun D, Zhang D, He Y. Exosomal transfer of miR 124 inhibits normal fibroblasts to cancer associated fibroblasts transition by targeting sphingosine kinase 1 in ovarian cancer. *J Cell Biochem* 2019;120(8):13187–201.

50. Dai G, Yao X, Zhang Y, Gu J, Geng Y, Xue F, et al. Colorectal cancer cell derived exosomes containing miR 10b regulate fibroblast cells via the PI3K/Akt pathway. *Bull Cancer* 2018;105(4):336–49.

51. van Dalen FJ, van Stevendaal M, Fennemann FL, Verdoes M, Ilina O. Molecular repolarisation of tumour associated macrophages. *Molecules* 2018;24(1):9.

52. Syed SN, Brune B. Exosomal and non exosomal MicroRNAs: New kids on the block for cancer therapy. *Int J Mol Sci* 2022;23(9):4493.

53. Taghikhani A, Hassan ZM, Ebrahimi M, Moazzeni SM. MicroRNA modified tumor derived exosomes as novel tools for maturation of dendritic cells. *J Cell Physiol* 2019;234(6):9417–27.

54. Wang M, Yu F, Ding H, Wang Y, Li P, Wang K. Emerging function and clinical values of exosomal MicroRNAs in cancer. *Mol Ther Nucleic Acids* 2019;16:791–804.

55. Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L, et al. Epithelial ovarian cancer secreted exosomal miR 222 3p induces polarization of tumor associated macrophages. *Oncotarget* 2016;7(28):43076–87.

56. Santos JC, Lima NDS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome mediated breast cancer chemoresistance via miR 155 transfer. *Sci Rep* 2018;8(1):829.

57. Yu DD, Lv MM, Chen WX, Zhong SL, Zhang XH, Chen L, et al. Role of miR 155 in drug resistance of breast cancer. *Tumour Biol* 2015;36(3):1395–401.

58. Donnarumma E, Fiore D, Nappa M, Roscigno G, Adamo A, Iaboni M, et al. Cancer associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. *Oncotarget* 2017;8(12):19592–608.

59. Yang SS, Ma S, Dou H, Liu F, Zhang SY, Jiang C, et al. Breast cancer derived exosomes regulate cell invasion and metastasis in breast cancer via miR 146a to activate cancer associated fibroblasts in tumor microenvironment. *Exp Cell Res* 2020;391(2):111983.

60. Baroni S, Romero Cordoba S, Plantamura I, Dugo M, D’Ippolito E, Cataldo A, et al. Exosome mediated delivery of miR 9 induces cancer associated fibroblast like properties in human breast fibroblasts. *Cell Death Dis* 2016;7(7):e2312.

61. Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, et al. Cancer cell secreted exosomal miR 105 promotes tumour growth through the MYC dependent metabolic reprogramming of stromal cells. *Nat Cell Biol* 2018;20(5):597–609.

62. Shen S, Song Y, Zhao B, Xu Y, Ren X, Zhou Y, Sun Q. Cancer derived exosomal miR 7641 promotes breast cancer progression and metastasis. *Cell Commun Signal* 2021;19(1):20.

63. Wu K, Feng J, Lyu F, Xing F, Sharma S, Liu Y, et al. Exosomal miR 19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor positive breast cancer. *Nat Commun* 2021;12(1):5196.

64. Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, et al. Hepatocellular carcinoma derived exosomal miRNA 21 contributes to tumor progression by converting hepatocyte stellate cells to cancer associated fibroblasts. *J Exp Clin Cancer Res* 2018;37(1):324.

65. Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, et al. Tumor derived microRNA 494 promotes angiogenesis in non small cell lung cancer. *Angiogenesis* 2015;18(3):373-82.

66. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to toll like receptors to induce prometastatic inflammatory response. *Proc Natl Acad Sci U S A* 2012;109(31):E2110-6.

67. Xia Y, Wei K, Hu LQ, Zhou CR, Lu ZB, Zhan GS, et al. Exosome mediated transfer of miR 1260b promotes cell invasion through Wnt/beta catenin signaling pathway in lung adenocarcinoma. *J Cell Physiol* 2020;235(10):6843-53.

68. Shao Y, Chen T, Zheng X, Yang S, Xu K, Chen X, et al. Colorectal cancer derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. *Carcinogenesis* 2018;39(11):1368-79.

69. Tsukamoto M, Iinuma H, Yagi T, Matsuda K, Hashiguchi Y. Circulating exosomal microRNA 21 as a biomarker in each tumor stage of colorectal cancer. *Oncology* 2017;92(6):360-70.

70. Yang B, Feng X, Liu H, Tong R, Wu J, Li C, et al. High metastatic cancer cells derived exosomal miR 92a 3p promotes epithelial mesenchymal transition and metastasis of low metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. *Oncogene* 2020;39(42):6529-43.

71. Zhang Y, Wang S, Lai Q, Fang Y, Wu C, Liu Y, et al. Cancer associated fibroblasts derived exosomal miR 17 5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF beta1 positive feedback loop. *Cancer Lett* 2020;491:22-35.

72. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR 21 to normoxic cells to elicit a prometastatic phenotype. *Cancer Res* 2016;76(7):1770-80.

73. Yang H, Fu H, Wang B, Zhang X, Mao J, Li X, et al. Exosomal miR 423 5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. *Mol Carcinog* 2018;57(9):1223-36.

74. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. *Cancer Res* 2011;71(15):5346-56.

75. Li BL, Lu W, Qu JJ, Ye L, Du GQ, Wan XP. Loss of exosomal miR 148b from cancer associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. *J Cell Physiol* 2019;234(3):2943-53.

76. Li X, Chen Z, Ni Y, Bian C, Huang J, Chen L, et al. Tumor associated macrophages secret exosomal miR 155 and miR 196a 5p to promote metastasis of non small cell lung cancer. *Transl Lung Cancer Res* 2021;10(3):1338-54.

77. Deng T, Zhang H, Yang H, Wang H, Bai M, Sun W, et al. Exosome miR 155 derived from gastric carcinoma promotes angiogenesis by targeting the c MYB/ VEGF axis of endothelial cells. *Mol Ther Nucleic Acids* 2020;19:1449-59.

78. Zhou Z, Zhang H, Deng T, Ning T, Liu R, Liu D, et al. Exosomes carrying microRNA 155 target forkhead box o3 of endothelial cells and promote angiogenesis in gastric cancer. *Mol Ther Oncolytics* 2019;15:223-33.

79. Zhou X, Yan T, Huang C, Xu Z, Wang L, Jiang E, et al. Melanoma cell secreted exosomal miR 155 5p induce proangiogenic switch of cancer associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. *J Exp Clin Cancer Res* 2018;37(1):242.

80. Wang D, Wang X, Song Y, Si M, Sun Y, Liu X, et al. Exosomal miR 146a 5p and miR 155 5p promote CXCL12/CXCR7 induced metastasis of colorectal cancer by crosstalk with cancer associated fibroblasts. *Cell Death Dis* 2022;13(4):380.

81. Yuan X, Qian N, Ling S, Li Y, Sun W, Li J, et al. Breast cancer exosomes contribute to pre metastatic niche formation and promote bone metastasis of tumor cells. *Theranostics* 2021;11(3):1429-45.

82. Tian XP, Wang CY, Jin XH, Li M, Wang FW, Huang WJ, et al. Acidic microenvironment up regulates exosomal miR 21 and miR 10b in early stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. *Theranostics* 2019;9(7):1965-79.

83. Tiong TY, Chan ML, Wang CH, Yadav VK, Pikatan NW, Fong IH, et al. Exosomal miR 21 determines lung to brain metastasis specificity through the DGKB/ ERK axis within the tumor microenvironment. *Life Sci* 2023;329:121945.

84. Ye B, Duan Y, Zhou M, Wang Y, Lai Q, Yue K, et al. Hypoxic tumor derived exosomal miR 21 induces cancer associated fibroblast activation to promote head and neck squamous cell carcinoma metastasis. *Cell Signal* 2023;108:110725.

85. Wang C, Wang Y, Chang X, Ba X, Hu N, Liu Q, et al. Melanoma derived exosomes endow fibroblasts with an invasive potential via miR 21 target signaling pathway. *Cancer Manag Res* 2020;12:12965-74.

86. Zhuang H, Wang H, Yang H, Li H. Exosome encapsulated MicroRNA 21 from esophageal squamous cell carcinoma cells enhances angiogenesis of human

umbilical venous endothelial cells by targeting SPRY1. *Cancer Manag Res* 2020;12:10651–67.

87. Ohzawa H, Kumagai Y, Yamaguchi H, Miyato H, Sakuma Y, Horie H, et al. Exosomal microRNA in peritoneal fluid as a biomarker of peritoneal metastases from gastric cancer. *Ann Gastroenterol Surg* 2020;4(1):84–93.

88. Zhang Z, Hu J, Ishihara M, Sharroo AC, Flora K, He Y, et al. The miRNA 21 5p payload in exosomes from M2 macrophages drives tumor cell aggression via PTEN/Akt signaling in renal cell carcinoma. *Int J Mol Sci* 2022;23(6):3005.

89. Zhang Y, Han T, Feng D, Li J, Wu M, Peng X, et al. Screening of non invasive miRNA biomarker candidates for metastasis of gastric cancer by small RNA sequencing of plasma exosomes. *Carcinogenesis* 2020;41(5):582–90.

90. Cho O, Kim DW, Cheong JY. Plasma exosomal miRNA Levels after radiotherapy are associated with early progression and metastasis of cervical cancer: A pilot study. *J Clin Med* 2021;10(10):2110.

91. Kia V, Paryan M, Mortazavi Y, Biglari A, Mohammadi Yeganeh S. Evaluation of exosomal miR 9 and miR 155 targeting PTEN and DUSP14 in highly metastatic breast cancer and their effect on low metastatic cells. *J Cell Biochem* 2019;120(4):5666–76.

92. Lu J, Liu QH, Wang F, Tan JJ, Deng YQ, Peng XH, et al. Exosomal miR 9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. *J Exp Clin Cancer Res* 2018;37(1):147.

93. Song W, Chen Y, Zhu G, Xie H, Yang Z, Li L. Exosome mediated miR 9 5p promotes proliferation and migration of renal cancer cells both in vitro and in vivo by targeting SOCS4. *Biochem Biophys Res Commun* 2020;529(4):1216–24.

94. Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, et al. Hypoxic BMSC derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3 induced EMT. *Mol Cancer* 2019;18(1):40.

95. Wang L, He J, Hu H, Tu L, Sun Z, Liu Y, et al. Lung CSC derived exosomal miR 210 3p contributes to a pro metastatic phenotype in lung cancer by targeting FGFR1. *J Cell Mol Med* 2020;24(11):6324–39.

96. Bigagli E, Luceri C, Guasti D, Cinci L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA 210. *Cancer Biol Ther* 2016;17(10):1062–9.

97. Lu Y, Han G, Zhang Y, Zhang L, Li Z, Wang Q, et al. M2 macrophage secreted exosomes promote metastasis and increase vascular permeability in hepatocellular carcinoma. *Cell Commun Signal* 2023;21(1):299.

98. Huang C, Tang S, Shen D, Li X, Liang L, Ding Y, et al. Circulating plasma exosomal miRNA profiles serve as potential metastasis related biomarkers for hepatocellular carcinoma. *Oncol Lett* 2021;21(2):168.

99. Kim O, Tran PT, Gal M, Lee SJ, Na SH, Hwangbo C, et al. RAS stimulated release of exosomal miR 494 3p promotes the osteolytic bone metastasis of breast cancer cells. *Int J Mol Med* 2023;52(3):84.

100. Li J, Chen J, Wang S, Li P, Zheng C, Zhou X, et al. Blockage of transferred exosome shuttled miR 494 inhibits melanoma growth and metastasis. *J Cell Physiol* 2019;234(9):15763–74.

101. Kim DH, Park H, Choi YJ, Kang MH, Kim TK, Pack CG, et al. Exosomal miR 1260b derived from non small cell lung cancer promotes tumor metastasis through the inhibition of HIPK2. *Cell Death Dis* 2021;12(8):747.

102. Wang D, Wang X, Si M, Yang J, Sun S, Wu H, et al. Exosome encapsulated miRNAs contribute to CXCL12/CXCR4 induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. *Cancer Lett* 2020;474:36–52.

103. Ashok G, Das R, Anbarasu A, Ramaiah S. Comprehensive analysis on the diagnostic role of circulatory exosome based miR 92a 3p for osteoblastic metastases in prostate adenocarcinoma. *J Mol Recognit* 2023;36(8):e3042.

104. Wang M, Zhao M, Guo Q, Lou J, Wang L. Non small cell lung cancer cell derived exosomal miR 17 5p promotes osteoclast differentiation by targeting PTEN. *Exp Cell Res* 2021;408(1):112834.

105. Sur D, Balacescu L, Cainap SS, Visan S, Pop L, Burz C, et al. Predictive Efficacy of MiR 125b 5p, MiR 17 5p, and MiR 185 5p in liver metastasis and chemotherapy response among advanced stage colorectal cancer patients. *Front Oncol* 2021;11:651380.

106. Yuan Y, Guo L, Guo S. Exosomal miR 10b promotes invasion and epithelial mesenchymal transformation of lung adenocarcinoma A549 cells by regulating macrophage M2 polarization. *Zhongguo Fei Ai Za Zhi* 2022;25(12):835–42.

107. Li X, Yang T, Shu C. The oral tumor cell exosome miR 10b stimulates cell invasion and relocation via AKT signaling. *Contrast Media Mol Imaging* 2022;2022:3188992.

108. Hao C, Sheng Z, Wang W, Feng R, Zheng Y, Xiao Q, et al. Tumor derived exosomal miR 148b 3p mediates M2 macrophage polarization via TSC2/mTORC1 to promote breast cancer migration and invasion. *Thorac Cancer* 2023;14(16):1477–91.